K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

Đề sai nha bn:

Sửa đề:\(3^{2^{4n+1}}+2^{3^{4n+1}}+5⋮22\)

Theo định lý Fermat ta có:

\(2^{10}=1\left(mod11\right)\)(= là dấu đồng dư nha)

\(3^{10}=1\left(mod11\right)\)

Ta tìm dư trong phép chia \(2^{4n+1};3^{4n+1}\)cho 10

Mặt khác:

\(2^{4n+1}=2.16^n=2\left(mod10\right)\)

\(\Rightarrow2^{4n+1}=10k+2\)

Tương tự:

\(3^{4n+1}=10h+3\)

\(\Rightarrow3^{2^{4n+1}}+2^{3^{4n+1}}=3^{10k+2}+2^{10h+3}+5=\left(3^{10}\right)^k,9+\left(2^{10}\right)^h.8+5=9+8+5=0\left(mod22\right)\)

17 tháng 8 2017

thank bn

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:
Gọi biểu thức trên là $A$
Dễ thấy:

$3^{2^{4n+1}}$ lẻ, $2^{3^{4n+1}}$ chẵn, $5$ lẻ với mọi $n$ tự nhiên 

Do đó $A$ chẵn hay $A\vdots 2(*)$

Mặt khác:

$2^4\equiv 1\pmod 5\Rightarrow 2^{4n+1}\equiv 2\pmod 5$

$\Rightarrow 2^{4n+1}=5k+2$ với $k$ tự nhiên 

$\Rightarrow 3^{2^{4n+1}}=3^{5k+2}=9.(3^5)^k\equiv 9.1^k\equiv 9\pmod {11}$

Và:

$3^4\equiv 1\pmod {10}\Rightarrow 3^{4n+1}\equiv 3\pmod {10}$

do đó $3^{4n+1}=10t+3$ với $t$ tự nhiên 

$\Rightarrow 2^{3^{4n+1}}=2^{10t+3}=8.(2^{10})^t\equiv 8.1^t\equiv 8\pmod{11}$

Do đó: 

$A\equiv 9+8+5=22\equiv 0\pmod {11}$
Vậy $A\vdots 11(**)$

Từ $(*); (**)\Rightarrow A\vdots 22$ (do $(2,11)=1$)

 
 

13 tháng 10 2023

\(A=2^{4n+1}-2\)

\(=2\left(2^{4n}-1\right)\)

\(=2\left(16^n-1\right)\)

\(=2\left(16-1\right)\left(16^{n-1}+16^{n-2}+...+16^0\right)\)

=>\(A⋮\left(16-1\right)\)

=>A chia hết cho 15

13 tháng 10 2023

chứng minh = đồng dư thức đc kh bn

 

 

24 tháng 4 2017

Chứng minh chia hết cho 2:

Ta có: \(3^{2^{4n+1}}\) là số lẻ và \(5\)là số lẻ nên

\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮2\left(1\right)\)

Chứng minh chia hết cho 11: (dùng \(\exists\)làm ký hiệu đồng dư)

Theo Fecma vì 11 là số nguyên tố nên

\(\Rightarrow3^{11-1}=3^{10}\exists1\left(mod11\right)\left(2\right)\)

Ta lại có: \(2^{4n+1}=2.16^n\exists2\left(mod10\right)\)

\(\Rightarrow2^{4n+1}=10k+2\)

Kết hợp với (2) ta được

\(\Rightarrow3^{4n+1}=3^{10k+2}=9.3^{10k}\exists9\left(mod11\right)\left(3\right)\)

Tương tự ta có:

\(\Rightarrow2^{11-1}=2^{10}\exists1\left(mod11\right)\left(4\right)\)

Ta lại có: 

\(3^{4n+1}=3.81^n\exists3\left(mod10\right)\)

\(\Rightarrow3^{4n+1}=10l+3\)

Kết hợp với (4) ta được

\(2^{3^{4n+1}}=2^{10l+3}=8.2^{10l}\exists8\left(mol11\right)\left(5\right)\)

Từ (3) và (5) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)\exists\left(9+8+5\right)\exists22\exists0\left(mod11\right)\)

\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮11\left(6\right)\)

Từ (1) và (6) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮\left(2.11\right)=22\)

6 tháng 10 2021

Ai giúp em vs ;-;

\(3^{8n+2}+2^{12n+3}\)

\(=24^n\cdot9+24^n\cdot8\)

\(=24^n\cdot17⋮17\)

\(\frac{a}{b}=\frac{c}{d}\)

\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

Ta có : 

\(\frac{a}{b}=\frac{c}{d}=m\Rightarrow a=m.b;c=m.d\)

\(\Rightarrow\frac{ac}{bd}=\frac{m.b.m.d}{bd}=m.m=m^2\)

\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{\left(mb\right)^2+\left(md\right)^2}{b^2+d^2}=\frac{m^2\left(b^2+d^2\right)}{b^2+d^2}=m^2\)

Vì \(m^2=m^2\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

17 tháng 4 2020

a) Thay m=2, n=-3 thì:

4.-3-3.2=-12-6=-18

b) (Bạn xem lại đề bài)

17 tháng 4 2020

a) 4n - 3m tại m = 2 và n = -3

Thay m = 2 , n = -3 vào biểu thức ta được: 4. 2 - 3 . ( -3 ) = 8 - ( -9 ) = 8 + 9 = 17

b) 2m + 7m - 6 tại m = -1 và n = 2

Có n đâu mà làm -.-

a) Vì \(3^{4n+1}\) luôn có chữ số tận cùng là 3

nên \(3^{4n+1}+2⋮5\)(Vì có chữ số tận cùng là 5)

c) Vì \(9^{2n+1}\) luôn có chữ số tận cùng là 9

nên \(9^{2n+1}+1⋮10\)(Vì có chữ số tận cùng là 0)