K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 3 2019

Đề sai, thử với \(n=0;1;2...\) đều không đúng

Đề đúng phải là: \(A=5^{2n+1}+2^{n+4}+2^{n+1}\)

Ta có: \(25\equiv2\left(mod23\right)\Rightarrow25^n\equiv2^n\left(mod23\right)\)

\(\Rightarrow5^{2n+1}=5.25^n\equiv5.2^n\left(mod23\right)\)

\(\Rightarrow A\equiv\left(5.2^n+2^{n+4}+2^{n+1}\right)\left(mod23\right)\)

\(5.2^n+2^{n+4}+2^{n+1}=5.2^n+16.2^n+2.2^n=23.2^n\equiv0\left(mod23\right)\)

\(\Rightarrow A\equiv0\left(mod23\right)\Rightarrow A⋮23\)

19 tháng 7 2017

Ta có công thức : \(a^{2k+1}+b^{2k+1}⋮a+b\forall a;b\in Z;k\in N\)

Áp dụng ta đc :

a )\(2^{70}+3^{70}=\left(2^2\right)^{35}+\left(3^2\right)^{35}=4^{35}+9^{35}⋮4+9=13\) (đpcm)

b)\(3^{105}+4^{105}=\left(3^5\right)^{35}+\left(4^5\right)^{35}=243^{35}+1024^{35}⋮243+1024=1267=181.7⋮181\)(đpcm)

24 tháng 12 2015

10 đồng dư với 1(mod 3)

=>102015 đồng dư với 12015(mod 3)

=>102015 đồng dư với 1 (mod 3)

=>102015 +2 đồng dư với 1+2 (mod 3)

=>102015+2 đồng dư với 3 (mod 3)

=>102015+2 chia hết cho 3

24 tháng 12 2015

10^2015+2=100...00+2(2015cs0)

                =100...02(2014cs0) 

vì 100...02 có tổng các chữ số là 1+0*2014+2=3

mà 3 chia hết cho 3 nên 100...02 chia hết cho 3

                                 hay 10^2015 chia hết cho 3

Nhớ tick cho mình nha

29 tháng 12 2015

chtt

các bạn cho mk vài li-ke cho tròn 600 với 

29 tháng 12 2015

ai tích mình mình tích lai liền ak

13 tháng 3 2016

Ta có: 35=1(mod 17)

=>3535=135(mod 17)

=>3535=1 (mod 17)

Ta có: 52=1(mod 17)

=>5252 = 152(mod 17)

=>5252=1(mod 17)

=>3535+5252-2=1+1-2 (mod 17)

=>A=0 (mod 17)

=>A chia hết cho 17 (đpcm)

23 tháng 12 2015

Chữ số tận cùng là 5 nên chia hết cho 5

23 tháng 12 2015

Câu hỏi tương tự