K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

Ta có: 3012 =  13.231 + 9

Do đó: 3012 đồng dư với 9 ( mod 13)

\(=>3012^3\) đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\) đồng dư với 1 ( mod 13)

=> \(3012^3\) đồng dư với 1 ( mod 13)

\(=>\left(3012^3\right)^{31}\) đồng dư với 1 ( mod 13)

\(hay3012^{93}\) đồng dư với 1 ( mod 13)

=> \(3012^{93}-1\) đồng dư với 0 ( mod 13)

hay \(3012^{93}\) chia hết cho 13 ( đpcm)

25 tháng 8 2017

tks nhé bạn hiền

15 tháng 3 2018

1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\)                                         \(7^2=49\equiv1\left(mod12\right)\)

             \(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\)                                     \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)

           \(\rightarrow5^{70}\equiv1\left(mod12\right)\)                                                 \(\rightarrow7^{70}\equiv1\left(mod12\right)\)

Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)

Bài 2 :  Ta có : 3012 = 13.231 + 9

Do đó: 3012 đồng dư với 9 (mod13)

=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)

=> \(3012^3\)đồng dư với 1 (mod13)

Hay \(3012^{93}\)đồng dư với 1 (mod13)

=> \(3012^{93}-1\)đồng dư với 0 (mod13)

Hay \(3012^{93}-1⋮13\left(đpcm\right)\)

           

6 tháng 3 2018

Căng thật, lớp 6 đã học đồng dư =((!

301293 : 13

Ta có: 301246 đồng dư với 1 (mod 13)

=> 301292 đồng dư với 1 (mod 13) và 93 đồng dư với 93.

Vậy 301293 : 13 dư 93

P/s: mình không chắc, mới học lớp 6

6 tháng 3 2018

Ta có :

3012 \(\equiv\)9 ( mod13 )

301293 \(\equiv\)993 ( mod13 ) , mà 993 \(\equiv\)1 ( mod13 )

=>  301293 \(\equiv\)1 ( mod13 )

Vậy 301293 : 13 dư 1

4 tháng 5 2016

ko biết

4 tháng 5 2016

theo chuyên đề đồng dư nha

4 tháng 2 2016

ta có 301293 - 1 chia hết cho 9

chứng minh rồi

4 tháng 2 2016

3012^93 chia hết cho 9 vì 3012^93 chia 9 dư 1 => 3012^93-1 chia hết cho 1 

chứng minh rồi nha

Bài 2: 

A=n(n+1)+1

Vì n;n+1 là hai số nguyên liên tiếp

nên n(n+1) chia hết cho 2

=>n(n+1)+1 không chia hết cho 2

hay A không chia hết cho 8

19 tháng 7 2017

Ta có công thức : \(a^{2k+1}+b^{2k+1}⋮a+b\forall a;b\in Z;k\in N\)

Áp dụng ta đc :

a )\(2^{70}+3^{70}=\left(2^2\right)^{35}+\left(3^2\right)^{35}=4^{35}+9^{35}⋮4+9=13\) (đpcm)

b)\(3^{105}+4^{105}=\left(3^5\right)^{35}+\left(4^5\right)^{35}=243^{35}+1024^{35}⋮243+1024=1267=181.7⋮181\)(đpcm)