K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(A=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)

\(A\ge\dfrac{\left(1+1+1\right)^2}{3+ab+bc+ac}=\dfrac{9}{3+ab+bc+ac}\)

Mặt khác,theo hệ quả AM-GM: \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}\le\dfrac{3^2}{3}=3\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ac}\ge\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

Đầu tiên ta cm bđt:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(tự cm)

Áp dụng ta có:

\(A=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\ge\dfrac{9}{3+ab+bc+ca}\)

Cần cm:\(ab+bc+ca\le3\)

Hay \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

=>đpcm