![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu này chắc chắn có bạn trả lời được thôi. Dùng đồng dư hoặc hàm euler.
câu a: Mình gợi ý chứng minh M chia hết cho 3 nhưng không chia hết cho 9 nên M không là số chính phương.
a, Nguyên lý đirichle cứu với!!!!!!!! | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam
b, Ta có: \(20^5\equiv1\left(mod11\right)\)
\(\left(20^5\right)^3\equiv1^3\equiv1\left(mod11\right)\)
Tương ứng với \(20^{15}\) : 11 dư 1
=> 2015 - 1 \(⋮\) 11 (đpcm)
c, Có: \(2^{30}\equiv12\left(mod13\right)\);
\(3^{15}\equiv1\left(mod13\right)\)
\(\left(3^{15}\right)^2\equiv1^2\equiv1\left(mod13\right)\)
<=> \(2^{30}+3^{30}\) \(\equiv12+1\equiv13\left(mod13\right)\)
Vì 13 chia hết cho 13 nên 230 + 330 chia hết cho 13 (đpcm)
d, tượng tự b
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Đặt A = 1993 - 199
= 199(1992-1)
= 199(199-1)(199+1)
= 199 . 198 . 200
Vì 200 \(⋮\) 200 nên A \(⋮\) 200 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(11^{10}-1=\left(....1\right)-1\)=......0
vì chữ số tận cùng bằng 0 nên \(11^{10}-1⋮100\)
mik lm hơi tắt nhưng thôi k mik nha
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1110-1=(11-1)(119+118+...+11)=10(119+118+...+11)⋮10
Vì 1110-1⋮10=>11x-1⋮10<=>(119+118+...+11)⋮10
=>10(119+118+...+11)⋮100
=>1110-1⋮100
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\dfrac{n^3-1}{n^3+1}=\dfrac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n+1\right)\left(n^2-n+1\right)}=\dfrac{\left(n-1\right)[\left(n+0,5\right)^2+0,75]}{\left(n+1\right)[\left(n-0,5\right)^2+0,75]}\)
Thay vào M ta có:
\(M=\dfrac{2,5^2+0.75}{3.\left(1,5^2+0,75\right)}.\dfrac{2.\left(3,5^2+0,75\right)}{4.\left(2,5^2+0,75\right)}...\dfrac{99[\left(100,5\right)^2+0,75]}{101.[\left(99,5\right)^2+0,75}\)
\(=\dfrac{1.2.3...99}{3.4.5...101}.\dfrac{\left(2,5^2+0,75\right).\left(3,5^2+0,75\right)...[\left(100,5\right)^2+0,75]}{\left(1,5^2+0,75\right).\left(2,5^2+0,75\right)...[\left(99,5\right)^2+0,75]}\)\(=\dfrac{1.2}{100.\left(101\right)}.\dfrac{\left(100,5\right)^2+0,75}{1,5^2+0,75}=\dfrac{2}{3}.\dfrac{\left(100^2+100+1\right)}{3.100.101}>\dfrac{2}{3}\left(đpcm\right)\)
Google => gõ: chứng minh 11 mũ .. => online math
Đã có câu hỏi này của 1 bạn khác và được giải rồi nhé