\(\sqrt{3}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2017

Áp dụng BDT AM-GM ta có:\(VT\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{x+y+1}\right)\)

\(\Rightarrow\frac{VT}{3}\ge\frac{x^2}{xy+xz+x}+\frac{y^2}{yz+yx+y}+\frac{z^2}{xz+zy+z}\)

\(\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+xy+z}\) (Cauchy-Schwarz)

Do \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)\(\Rightarrow\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)^2\)

\(\Rightarrow x+y+z\le x^2+y^2+z^2\).Suy ra

\(2\left(xy+yz+xz\right)+x+y+z\le2\left(xy+yz+xz\right)+x^2+y^2+z^2=\left(x+y+z\right)^2\)

Suy ra \(\frac{VT}{3}\le\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\Rightarrow VT\ge3\) (điều phải chứng minh)

Dấu "=" xảy ra khi x=y=z=1

2 tháng 2 2019

Áp dụng BĐT AM-GM cho 3 số không âm, ta có: \(0< \sqrt[3]{yz.1}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{3x}{y+z+1}\)

Làm tương tự với 2 hạng tử còn lại rồi cộng theo vế thì có:

\(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}\ge3\left(\frac{x}{y+z+1}+\frac{y}{z+x+1}+\frac{z}{x+y+1}\right)\)

\(=3\left(\frac{x^2}{xy+xz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{zx+yz+z}\right)\ge^{Schwartz}3.\frac{\left(x+y+z\right)^2}{x+y+z+2\left(xy+yz+zx\right)}\)

\(=3.\frac{x^2+y^2+z^2+2\left(xy+yz+zx\right)}{x+y+z+2\left(xy+yz+zx\right)}\ge9.\frac{xy+yz+zx}{\sqrt{3\left(x^2+y^2+z^2\right)}+2\left(x^2+y^2+z^2\right)}\)

\(=9.\frac{xy+yz+zx}{3+2.3}=xy+yz+zx\) => ĐPCM.

Dấu "=" xảy ra khi x=y=z=1.

6 tháng 7 2017

P=(2x+1/x)+(2y+1/y)-(x+y)+(x/y+y/x)+2

+có (x+y)^2 </ 2(x^2+y^2)(C-S)  => x+y </ 2 => -(x+y) >/ căn (2) 

+am-gm 3 lần 

6 tháng 7 2017

mk bt làm rồi bn chờ chút nha

a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

b: \(x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

c: \(=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\ne0\)

26 tháng 7 2019

2.

\(x+y+1=\sqrt{x}+\sqrt{y}+\sqrt{xy}\)

\(\Leftrightarrow2x+2y+2=2\sqrt{x}+2\sqrt{y}+2\sqrt{xy}\)

\(\Leftrightarrow x-2\sqrt{xy}+y+x-2\sqrt{x}+1+y-2\sqrt{y}+1=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=\sqrt{y}\\\sqrt{x}=1\\\sqrt{y}=1\end{matrix}\right.\Leftrightarrow x=y=1\)

Từ đó suy ra : \(\left\{{}\begin{matrix}P=1^2+1^2=2\\Q=1^{1023}+1^{2014}=2\end{matrix}\right.\)

26 tháng 7 2019

1.

Xét \(x^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiacopxki :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)

\(\Rightarrow x^2+y^2\ge\frac{1}{2}\)

Từ đó ta có : \(P=\frac{1}{x^2+y^2}\le\frac{1}{\frac{1}{2}}=2\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

16 tháng 6 2018
https://i.imgur.com/Godbi3O.jpg
4 tháng 5 2019

1.

Đầu tiên ta cm: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\) (cô si)

Dấu "=" khi a = b.

Áp dụng:

\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\) \(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}\cdot4xy}+\frac{5}{\left(x+y\right)^2}\)

\(=4+2+5=11\)

Vậy MinA = 11 khi \(x=y=\frac{1}{2}\)

4 tháng 5 2019

\(P=\frac{x^2+1}{x^2-x+1}\Leftrightarrow x^2+1=P\left(x^2-x+1\right)\)

\(\Leftrightarrow x^2+1-Px^2+Px-P=0\)(*)

\(\Leftrightarrow\left(1-P\right)x^2+Px+\left(1-P\right)=0\)

\(\Delta=P^2-4\left(1-P\right)^2\)

\(=P^2-4\left(1-2P+P^2\right)=-3P^2+8P-4\)

Để P có GTNN và GTLN thì phương trình (*) có nghiệm

\(\Leftrightarrow\Delta\ge0\Leftrightarrow-3P^2+8P-4\ge0\)

\(\Leftrightarrow-3P^2+2P+6P-4\ge0\)

\(\Leftrightarrow-P\left(3P-2\right)+2\left(3P-2\right)\ge0\)

\(\Leftrightarrow\left(3P-2\right)\left(2-P\right)\ge0\)

\(\Leftrightarrow\frac{2}{3}\le P\le2\)

Vậy \(min_P=\frac{2}{3}\Leftrightarrow x=-1\); \(max_P=2\Leftrightarrow x=1\)

7 tháng 8 2017

Áp dụng BĐT AM-GM ta có:

\(\left\{{}\begin{matrix}1+x\ge2\sqrt{x}\\x+y\ge2\sqrt{xy}\\1+y\ge2\sqrt{y}\end{matrix}\right.\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(1+x+y\right)\ge2\left(\sqrt{x}+\sqrt{y}+\sqrt{xy}\right)\)

\(\Leftrightarrow VT=1+x+y\ge\sqrt{x}+\sqrt{y}+\sqrt{xy}=VP\)

Xảy ra khi \(\left\{{}\begin{matrix}1+x=2\sqrt{x}\\x+y=2\sqrt{xy}\\1+y=2\sqrt{y}\end{matrix}\right.\)\(\Rightarrow x=y=1\)

Khi đó \(P=x^2+y^2=1^2+1^2=2\)

\(Q=x^{2009}+y^{2009}=1^{2009}+1^{2009}=2\)

7 tháng 8 2017

Với \(x,y>0\) ta có

\(1+x+y=\sqrt{x}+\sqrt{xy}+\sqrt{y}\)

\(\Leftrightarrow2+2x+2y-2\sqrt{x}-2\sqrt{xy}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)+\left(x-2\sqrt{xy}+y\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2=0\)

\(\forall x,y>0\) ta luôn có \(\left\{{}\begin{matrix}\left(\sqrt{x}-1\right)^2\ge0\\\left(\sqrt{y}-1\right)^2\ge0\\\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)

Đẳng thức xảy ra \(\Leftrightarrow x=y=1\)

Vậy x=y=1

Nên P=Q=2