\(⋮\)x2 - x + 1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

Ta có:

\(x^{8n}+x^{4n}+1=(x^{4n})^2+2.x^{4n}+1-x^{4n}\)

\(=(x^{4n}+1)^2-x^{4n}=(x^{4n}+1+x^{2n})(x^{4n}+1-x^{2n})\)

Xét \(x^{4n}+1+x^{2n}=(x^{2n})^2+2.x^{2n}+1-x^{2n}=(x^{2n}+1)^2-x^{2n}\)

\(=(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)

Do đó:

\(x^{8n}+x^{4n}+1=(x^{4n}+1-x^{2n})(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)

\(\Rightarrow x^{8n}+x^{4n}+1\vdots x^{2n}+x^n+1\) (đpcm)

b)

Sửa đề: \(x^{3m+1}+x^{3n+2}+1\vdots x^2+x+1\)

Đặt \(A=x^{3m+1}+x^{3n+2}+1\)

\(\Leftrightarrow A=x(x^{3m}-1)+x+x^2(x^{3n}-1)+x^2+1\)

\(\Leftrightarrow A=x[ (x^3)^m-1]+x^2[(x^3)^n-1]+(x^2+x+1)\)

Khai triển:

\((x^3)^m-1=(x^3)^m-1^m=(x^3-1).T=(x-1)(x^2+x+1)T\)

(đặt là T vì phần biểu thức đó không quan trọng)

\(\Rightarrow (x^3)^m-1\vdots x^2+x+1\)

Tương tự, \((x^3)^n-1\vdots x^2+x+1\)

Do đó, \(A=x(x^{3m}-1)+x^2(x^{3n}-1)+x^2+x+1\vdots x^2+x+1\)

Ta có đpcm.

27 tháng 3 2017

Ta có: 8\(\left(x+\dfrac{1}{x}\right)^2\)+4\(\left(x^2+\dfrac{1}{x^2}\right)^2\)\(\left(x+\dfrac{1}{x}\right)^2\)=(x+4)2

ĐKXĐ: x khác 0

<=>8\(\left(x+\dfrac{1}{x}\right)^2\)+4\(\left(x^2+\dfrac{1}{x^2}\right)\)\(\left(x^2+\dfrac{1}{x^2}-x^2-2-\dfrac{1}{x^2}\right)\)=(x+4)2

<=>8\(\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)

<=>8\(\left(x^2+2+\dfrac{1}{x^2}-x^2-\dfrac{1}{x^2}\right)\)=(x+4)2

=>(x+4)2=16

Vậy có 2 TH:

+) x+4=4 => x=0(KTMĐKXĐ)

+)x+4=-4 => x=-8(TMĐKXĐ)

Vậy tập nghiệm của phương trình S={-8}

27 tháng 3 2017

???

21 tháng 7 2017

a)theo C-S: \(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

Khi \(x=y\)

b)theo C-S: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)

khi x=y=z

c)theo C-S: \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

khi \(\frac{a}{x}=\frac{b}{y}\)

29 tháng 8 2017

2. Phân tích vế trái ta được:

\(2.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\)

Phân tích vế phải ta được:

\(6.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\)

\(VT=VP\) nên \(VP-VT=0.\)

\(\Rightarrow4.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]=0\)

\(\Rightarrow2.\left\{2.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\right\}=0\)

\(\Rightarrow2.\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\)

\(\Rightarrow x=y=z\) ( đpcm )

23 tháng 4 2017

b) ta có: \(\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x+y\right)^2\ge\left(x+y\right)^2\)

\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

- Thay \(x^2+y^2=1\)

\(\Rightarrow\)\(2\ge\left(x+y\right)^2\)

\(\Leftrightarrow\sqrt{\left(x+y\right)^2}\le\sqrt{2}\)

\(\Leftrightarrow\left|x+y\right|\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

23 tháng 4 2017

- Áp dụng bđt: \(a^2+b^2+c^2\ge ab+bc+ac\)

có: \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)

- Áp dụng tiếp bđt trên

có: \(a^2b^2+b^2c^2+a^2c^2\ge a^2bc+ab^2c+c^2ab\) (2)

\(\Leftrightarrow\)\(a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (3)

(1),(2),(3)\(\Rightarrow\) \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)