Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x chia hết cho 12; 21; 28
=> x thuộc BC(12; 21; 28) (1)
12 = 22.3
21 = 3.7
28 = 22.7
BCNN(12; 21; 28) = 22.3.7 = 4.3.7 = 84
BC(12; 21; 28) = B(84) = {0; 84; 168;....} (2)
(1)(2) => x thuộc {0; 84; 168;....}
Câu 2:
\(P\left(x\right)\) chia \(x-1\) dư 4 \(\Rightarrow P\left(x\right)=\left(x-1\right).Q\left(x\right)+4\)
\(\Rightarrow P\left(1\right)=4\)
Tương tự: \(P\left(x\right)=\left(x-3\right).R\left(x\right)+14\Rightarrow P\left(3\right)=14\)
Do \(\left(x-1\right)\left(x-3\right)\) bậc 2 nên số dư tối đa của phép chia là bậc 1
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-3\right).H\left(x\right)+ax+b\)
Thay \(x=1\Rightarrow P\left(1\right)=a+b\Rightarrow a+b=4\)
Thay \(x=3\Rightarrow P\left(3\right)=3a+b\Rightarrow3a+b=14\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=4\\3a+b=14\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=5\\b=-1\end{matrix}\right.\)
Số dư của phép chia là \(5x-1\)
a/ Nếu \(x⋮3\)
\(P\left(x\right)=0\Leftrightarrow x^5-3x^4+6x^3-3x^2+9x-6=0\)
\(\Leftrightarrow x^5-3x^2\left(x-1\right)^2+9x=6\)
Vế trái chia hết cho 9, vế phải không chia hết cho 9 nên pt vô nghiệm
- Nếu \(x⋮̸3\)
\(P\left(x\right)=0\Leftrightarrow x^5=3\left(x^4-2x^3+x^2-3x+2\right)\)
Vế trái ko chia hết cho 3, vế phải chia hết cho 3
Vậy pt luôn luôn vô nghiệm
\(x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)
=> \(\left(x^6-1\right)=\left(\left(x^3\right)^2-1\right)=\left(x^3-1\right)\left(x^3+1\right)=\left(x^3-1\right)\left(x+1\right)\left(x^2-x+1\right)⋮x^2-x+1\)
Dạo này bận quá ít thời gian làm =(((
\(x^6-1\)
\(=\left(x^3\right)^2-1^2\)
\(=\left(x^3-1\right)\left(x^3+1\right)\)
\(=\left(x^3-1^3\right)\left(x^3+1^3\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)⋮\left(x^2-x+1\right)\forall x\left(đpcm\right)\)