K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

Đề phải cho x thuộc Z chứ bạn 

Xét : x^5-x = x.(x^4-1) = x.(x^2-1).(x^2+1) = (x-1).x.(x+1).(x^2+1)

Ta thấy x-1;x;x+1 là 3 số nguyên liên tiếp nên có 1 số chia hết cho 3 => x^5-x chia hết cho 3

=> x^5-x+2 chia 3 dư 2 => x^5-x+2 ko phải là số chính phương ( vì số chính phương chia 3 dư 0 hoặc 1 )

=> ĐPCM

Tk mk nha

Xét \(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)

Ta thấy x-1, x, x+1 là ba số nguyên liên tiếp 

\(\Rightarrow x\left(x-1\right)\left(x+1\right)⋮3\)

\(\Rightarrow x^5-x⋮3\)

\(\Rightarrow x^5-x+2\equiv2\left(mod3\right)\)

Vậy x5-x+2 không phải số chính phương (do x5-x+2 chia 3 dư 0 và 1) 

27 tháng 3 2016

3)+giả sử aabb=n^2 
<=>a.10^3+a.10^2+b.10+b=n^2 
<=>11(100a+b)=n^2 
=>n^2 chia hết cho 11 
=>n chia hết cho 11 
do n^2 có 4 chữ số nên 
32<n<100 
=>n=33,n=44,n=55,...n=99 
thử vào thì n=88 là thỏa mãn 
vậy số đó là 7744

27 tháng 3 2016

2)

a

v

à

b

l

n

ê

n

a

=

2k+1,

b

=

2m+1

(V

i

k,

m

N)

a

2

+

b

2

=

(2k+1)

2

+

(2m+1)

2

=

4k

2

+

4k

+

1

+

4m

2

+

4m

+

1

=

4(k

2

+

k

+

m

2

+

m)

+

2

=

4t

+

2

(V

i

t

N)

Kh

ô

ng

c

ó

s

ch

í

nh

ph

ươ

ng

n

à

o

c

ó

d

ng

4t

+

2

(t

N)

do

đó

a

2

+

b

2

kh

ô

ng

th

l

à

s

ch

í

nh

ph

ươ

ng

1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)

Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.

2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương

\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)

\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)

Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:

+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)

\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)

+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)

\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.

3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:

---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)

Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau

Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau

---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)

Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)

Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)

-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)

Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.

13 tháng 2 2020

Giả sử n có tận cung là 1,2,3,4,5,6,7,8,9,0 suy ra n^5 tận cùng laf1,2,3,4,5,6,7,8,9,0(lần lượt)

Suy ra A=n^5-n có tận cùng là : 1-1=0,2-2=0,.....9-9=0,0-0=0

Suy ra A+2 có tận cùng là 0+2=2 mà ko có số chính phương nào tận cùng bằng 2

Vậy A+2 không là số cp

17 tháng 3 2017

Ta có    \(x^5-x=x\left(x^4-1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)⋮3\)

mà \(x\left(x+1\right)\left(x-1\right)\left(x^2+1\right)⋮3\)cho nên x5-x+2 chia 3 dư 2 nên không phải là số chính phương.

18 tháng 7 2015

Đề nhầm giả sử 3^2+7=4^2 => 7 chính phương (vô lí)