K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

thay n đặt A

A=n^5-n

=n(n^4-1)

=n(n-1)(n+1)(n^2+1)n(n-1)(n+1) chia hết cho 6

nếu n=5k => A chia hết cho 5.6=30

nếu n=5k+1 => -1 chia hết cho 5 => A chia hết cho 30

Nếu n=5k+2 => ^2+1=25k^2+20k+5 chia hết cho 5

=> A chia hết cho 10nếu n=5k+3 =>^2+1=25k^2+30k+10 chia hết cho 5

=>A chia hết cho 30

Nếu n=5k+4 =>+1=5k+5 chia hết cho 5

=>A chia hết cho 30

Vậy với n nguyên dương thì n^5-n chia hết cho 30

24 tháng 6 2018

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

10 tháng 4 2017

\(A=x^5y-xy^5=xy\left(x^4-y^4\right)=xy\left(x^2-y^2\right)\left(x^2+y^2\right)=xy\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(A=xy\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

Thây vì c/m A chia hết cho 30 ta chia nhỏ 30 =2.3.5

1)c/m A chia hết cho

1.1)nếu x hoặc y chẵn hiển nhiên

1.2 x và y lẻ => x-y phải chẵn {tổng đại số hai số lẻ là số chẵn}

=> A chia hết cho 2

2)c/m A chia hết cho 3

2.1)nếu x hoặc y =3k hiển nhiên

2.2 x=3k+1 và y=3t+1 => (x-y)=3(k-t) hiển nhiên chia hết cho 3

2.3 x=3k+1 và y=3t+2 => (x+y) =3(k+t+1) hiển nhiên chia hết cho 3

x,y vai trò như nhau => A chia hết cho 3 (**)

3)

c/m A chia hết cho 5

3.1)nếu x hoặc y =5k hiển nhiên

3.2 x=5k+1 và y=5t+1 => (x-y)=5(k-t) hiển nhiên chia hết cho 5

3.3 x=5k+1 và y=5t+2 => (x^2+y^2) =5(5k^2+5t^2+2k+2t+1) hiển nhiên chia hết cho 5

3.4 x=5k+1 và y=5t+3 => (x^2+y^2) =5(5k^2+5t^2+2k+2t+2) hiển nhiên chia hết cho 5

3.5 x=5k+1 và y=5t+4 => (x^2-y^2) =5(5k^2-5t^2-2k+2t-3) hiển nhiên chia hết cho 5

x,y vai trò như nhau các trường hợp khác tương tự => A chia hết cho 5 (**)

Kết luận

A chia hết cho 2,3,5 mà 2,3,5, nguyên tố => A chia hết cho 2.3.5 =30=> dpcm

10 tháng 4 2017

p/s: có thể phân tích tiếp A --> biện luận luôn cho dài => trông bài cho hoàng tráng

27 tháng 11 2016

Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)

=b(a−1)a(a+1)−a(b−1)b(b+1)

Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6

=> b(a−1)a(a+1);a(b−1)b(b+1)6a3bab36a3b−ab36

 

27 tháng 11 2016

mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

6 tháng 6 2017

a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\)\(5⋮5\) (1)

\(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)

Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)

b, \(n^3\left(n^2-7\right)-36n\)

\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)

\(=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)

6 tháng 6 2017

Bn Mai Xuân Phong ơi!Câu a, 5x3hay là 5n3 vậy?

26 tháng 5 2017

Mk chỉ lm 1 bài còn lại cứ tương tự mà lm! Bn hx lớp 7 ak?

3) Ta có: x2 + 2x + 2 = (x2 + 2x +1 ) +1 = ( x+ 1)2 +1

Vì ( x+ 1)2 \(\ge\) 0 => ( x + 1)2 + 1 \(\ge\) 1 > 0 (đpcm)

26 tháng 5 2017

Mình giúp 2 bài cuối thôi,các bài trên bạn có thể tự giải và 1 bài @Mỹ Duyên đã giải rồi.

4.Ta có: \(x^2-x+1=x^2-2.x.\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\)\(\geq\) 0 \(\Rightarrow\) \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) \(\geq\) \(\dfrac{3}{4}\) > 1 \(\forall\) x

5.Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)

\(-\left(x-2\right)^2\) \(\leq\) 0 \(\Rightarrow\) \(-\left(x-2\right)^2-1\) \(\leq\) \(-1\) <0 \(\forall\) x

\(A=x\left(x^4-5x^2+4\right)\)

\(=x\left(x^4-x^2-4x^2+4\right)\)

\(=x\left(x^2-1\right)\left(x^2-4\right)\)

\(=\left(x-2\right)\left(x-1\right)\cdot x\cdot\left(x+1\right)\left(x+2\right)\)

Vì x-2;x-1;x;x+1;x+2 là 5 số liên tiếp

nên \(\left(x-2\right)\left(x-1\right)\cdot x\cdot\left(x+1\right)\left(x+2\right)⋮5!\)

hay \(A⋮120\)

22 tháng 7 2018

Ta có: x^3 +5x

= (x^3 -x)+ 6x

= x(x^2 -1)+6x

= x(x-1)(x+1)+6x

Vì x;x-1 và x+1 là 3 STN liên tiếp nên x(x-1)(x+1) chia hết cho 6

Mà 6x chia hết cho 6

Do đó: x(x-1)(x+1)+ 6x chia hết cho 6

Vậy x^3 + 5x chia hết cho 6

Chúc bạn học tốt.