Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: (x+3)(x-11)+2003=x^2-11x+3x-33+2003
=x^2-8x+1970
=x^2-8x+4+1966
=(x^2-8x+4)+1966
=(x+2)^2 +1966
Vì (x+2)^2 > 0 và 1966>0 => Bthức trên luôn luôn dương.
OK

\(x^2-3x+3=\left(x^2-3x+\frac{9}{4}\right)+\frac{3}{4}=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}>0\)

Ta có: \(4x^2-28x+51=\left(2x\right)^2-2\cdot2x\cdot7+49+2\)
\(=\left(2x-7\right)^2+2\)(*)
Vì \(\left(2x-7\right)^2\ge0\) với mọi x
=> (*)\(\ge1\)
=>(*) luôn luôn dương với mọi x
ta có : \(4x^2-28x+51=\left(2x\right)^2-2.2x.7+7^2+51=\left(2x-7\right)^2+51\)
vì \(\left(2x-7\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x-7\right)^1+51>0\) với mọi x (đpcm)

x4-2x+2
= (x2)2-2x2+1+2x2-2x+1
=(x2-1)2+2(x2-x+1)
=(x2-1)2+2(x2-2.1/2x+1/4+1/4)
=(x2-1)2+2[(x-1/2)2+1/4]
vì (x2-1)2 lớn hơn hoặc = 0 với mọi x và 2[(x-1/2)2+1/4] lớn hơn hoặc = 0 với mọi x
nên (x2-1)2+2[(x-1/2)2+1/4] dương hay x4-2x+2 dương

\(x^4+x^2+2=\) \(\left(x^2\right)^2+2.x^2.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)
\(=\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}>0\)với mọi x
\(\left(x+3\right)\left(x-11\right)+2014=\) \(x^2-11x+3x-33+2014\)
\(=\) \(x^2-8x+1981\)
\(=\) \(x^2-2.x.4+16+1965\)
\(=\) \(\left(x-4\right)^2+1965>0\)với mọi x

ta có \(A=2x^2-2xy+\frac{y^2}{2}+\frac{y^2}{2}-4y+8+7\)
\(=\frac{1}{2}\left[\left(4x^2-4xy+y^2\right)+\left(y^2-8y+18\right)\right]+7\)
\(=\frac{1}{2}\left[\left(2x-y\right)^2+\left(y-4\right)^2\right]+7\ge7\)
Vậy ta có A luôn dương
(x + 3)(x - 11)+ 2003
= x2 + 3x - 11x - 33 + 2003
= x2 - 8x - 33 + 2003
= x2 - 4.2x + 16 - 49 + 2003
= (x - 4)2 + 1954, luôn dương (đpcm)
Ta có: \(\left(x+3\right)\left(x-11\right)+2003\)
\(=x^2-8x+-33+2003\)
\(=x^2-8x+16+1954\)
\(=\left(x-4\right)^2+1954\)
Do \(\left(x-4\right)^2\ge0\) với mọi x
=> \(\left(x-4\right)^2+1954>0\) với mọi x
<=> \(\left(x+3\right)\left(x-11\right)+2003>0\) với mọi x
=> (x+3)(x-11)+2003 luôn dương với mọi giá trị của x