Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\left(a+b\right)\left(-x-y\right)-\left(a-y\right)\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{a\left(-x-y\right)+b\left(-x-y\right)-a\left(b-x\right)+y\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{-ax-ay-bx-by-ab+ax+by-xy}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{-ay-bx-ab-xy}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{-xy+ay+ab+by}{abxy\left(xy+ay+ab+by\right)}=\dfrac{-1}{abxy}\)
Với \(a=\dfrac{1}{3};b=-2;x=\dfrac{3}{2};y=1\)
\(\Rightarrow A=\dfrac{-1}{\dfrac{1}{3}.\left(-2\right).\dfrac{3}{2}.1}=-1\)
\(x+y+1=0\\ \Leftrightarrow x+y=-1\)
Thay x+y=-1 vào C ta có:
\(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(\Rightarrow C=x^2\left(-1\right)-y^2\left(-1\right)+x^2-y^2+2\left(-1\right)+3\)
\(\Rightarrow C=-x^2+y^2+x^2-y^2-2+3\)
\(\Rightarrow C=\left(-x^2+x^2\right)+\left(y^2-y^2\right)+\left(3-2\right)\)
\(\Rightarrow C=0+0+1\)
\(\Rightarrow C=1\)
bai 1 :Ta co |x-3,5| >hoac=0
va |y-1,3| >hoac=0 nen |x-3,5|+|y-1,3|=0 <=> x-3,5=0 va y-1,3=0
=>x=-3,5 va y=-1,3
bai 2: ta co
A=|x-500| +|x-300| =|x-500|+|300-x|
=>A > hoac =|x-500+300-x|=|-200|=200
dau = xay ra<=>(x-500).(300-x)=0 =>300< hoac=x< hoac =500
Bài 1 :
Ta có : \(\left|x-3,5\right|\ge0\) với mọi x
\(\left|y-1,3\right|\ge0\) với mọi x
\(\Rightarrow\left|x-3,5\right|+\left|y-1,3\right|\ge0\) với mọi x
Mà \(\left|x-3,5\right|+\left|y-1,3\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x-3,5\right|=0\\\left|y-1,3\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-3,5=0\\y-1,3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3,5\\y=1,3\end{cases}}\)
Bài 2 :
Ta có : \(\left|x-500\right|\ge0\) với mọi x
\(\left|x-300\right|\ge0\) với mọi x
\(\Rightarrow\left|x-500\right|+\left|x-300\right|\ge0\) với mọi x
Câu này mk ko bít, làm tới đây đc thôi à
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
\(A=x^3-y^3-21xy\)
\(A=\left(x-y\right).\left(x^2+xy+y^2\right)-21xy\)
\(A=7.\left(x^2+xy+y^2\right)-21xy\)
\(A=7.\left(x^2+xy+y^2+3xy\right)\)
\(A=7.\left(x^2+2xy+y^2+2xy\right)\)
\(A=7.\text{[}\left(x+y\right)^2+2xy\text{]}\)
\(A=7.\left(7^2+2xy\right)\)
\(A=7^3+14xy\)
Ngáo rồi @@
\(\)
\(A=x^3-y^3-21xy\)
\(\Rightarrow A=\left(x-y\right)\left(x^2+xy+y^2\right)-21xy\)
\(\Rightarrow A=7\left(x^2+xy+y^2\right)-21xy\)
\(\Rightarrow A=7\left(x^2+xy+y^2-3xy\right)\)
\(\Rightarrow A=7\left(x^2+y^2-2xy\right)\)
\(\Rightarrow A=7\left(x-y\right)^2\)
\(\Rightarrow A=7.7^2\)
\(\Rightarrow A=7.49\)
\(\Rightarrow A=343\)
Ta có \(\left(x-y\right)^2\ge0\)
=> \(x^2-2xy+y^2\ge0\)
=> \(x^2+y^2\ge2xy\)( đpcm)
Tớ nghĩ đề bài phải là tính A=(x+y)(x-y)
Ta có (x+y)(x-y)=x2-y2, ko có GTNN
Bạn kiểm tra lại đề nhé