Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=x2+x+1=x2+\(\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x+\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^{^2}+\dfrac{3}{4}\)
=>f(x)≥\(\dfrac{3}{4}\)
=>đa thức trên vô nghiệm
Bài này có nhiều cách, vừa rồi là cách cơ bản, còn nếu bạn muốn nâng cao chút thì có thể dùng cách này nha:
Xét x≥0 thì x+1>0
x(x+1)≥0=>x(x+1)+1>0 =>x2+x+1>0 (1)
Xét -1<x<0 thì x+1≤0. Ta lại có x2≥0 nên x2+x+1 >0 (2)
Xét x≤-1 thì x<0 và x+1≤0. Do đó
x(x+1) ≥0=>x(x+1) +1>0=>x2+x+1>0 (3)
Từ (1), (2), (3)=> đa thức f(x) vô nghiệm
Có P(x)=3x^4+x^2+1/4
Vì 3x^4 \(\ge\) 0 Với mọi x
x^2 \(\ge\) 0 Với mọi x
nên 3x^4+x^2 \(\ge\) 0 với mọi x
=>3x^4+x^2+1/4 \(\ge\) 0+1/4 >0 với mọi x
=>P(x) > với mọi x
Vậy P(x) vô nghiệm
: Delta = (-5)^2 - 4.1.1 = 21 - 80 = -59 . Vì Delta < 0 nên đa thức x^2 - 5x + 1 vô nghiệm
Ta có: \(x^2+5x^2+1\)
\(=x^2+\frac{5}{2}x^2+\frac{5}{2}x^2+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2+1\)
\(=x\left(x^2+\frac{5}{2}\right)+\frac{5}{2}\left(x^2+\frac{5}{2}\right)-\frac{21}{4}\)
\(=\left(x^2+\frac{5}{2}\right)\left(x^2+\frac{5}{2}\right)-\frac{21}{4}\)
\(=\left(x^2+\frac{5}{2}\right)^2-\frac{21}{4}\)
Ta có:\(\left(x^2+\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow\left(x^2+\frac{5}{2}\right)^2-\frac{21}{4}\le0\)
Vậy đa thức trên không có nghiệm
Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0.
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
Ta có x² + x + 1
= x² + x + 4/4
= x² + x + 1/4 + 3/4
= (x² + x + 1/4) + 3/4
= (x² + 2.x.(1/2) + (1/2)² ) + 3/4
= (x + 1/2)² + 3/4
Do (x + 1/2) ≥ 0 ∀ x ∈ R
=> (x + 1/2)² + 3/4 ≥ 3/4 > 0 ∀ x ∈ R
=> x² + x + 1 > 0 ∀ x ∈ R
=> đpcm
Ta có x² + x + 1
= x² + x + 4/4
= x² + x + 1/4 + 3/4
= (x² + x + 1/4) + 3/4
= (x² + 2.x.(1/2) + (1/2)² ) + 3/4
= (x + 1/2)² + 3/4
Do (x + 1/2) ≥ 0 ∀ x ∈ R
=> (x + 1/2)² + 3/4 ≥ 3/4 > 0 ∀ x ∈ R
=> x² + x + 1 > 0 ∀ x ∈ R
=> đpcm