K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

Có (x-2)(x-4)+3

= x2-2x-4x+8+3

=x2-6x+9+2

=(x-3)2+2

\(\left(x-3\right)^2\ge0\) vs mọi x

=> \(\left(x-3\right)^2+2>0\) vs mọi x

hay \(\left(x-2\right)\left(x-3\right)+3>0\) vs mọi x

15 tháng 5 2016

\(Q=x^4-x^3-2x^3+2x^2+2x^2-2x-x+1\)

\(Q=x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)+\left(x-1\right)\)

\(Q=\left(x-1\right)\left(x^3-2x^2+2x+1\right)_{\ge}0\)

15 tháng 5 2016

\(Q=x^4-x^3-2x^3+2x^2+2x^2-2x-x+1\)

\(Q=x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)+\left(x-1\right)\)

\(Q=\left(x-1\right)\left(x^3-2x^2+2x+1\right)\ge0\)

1 tháng 6 2017

\(x^4-5x^3+11x^2-12x+6\)

\(=x^4-2x^3+2x^2-3x^3+6x^2-6x+3x^2-6x+6\)

\(=x^2\left(x^2-2x+2\right)-3x\left(x^2-2x+2\right)+3\left(x^2-2x+2\right)\)

\(=\left(x^2-3x+3\right)\left(x^2-2x+2\right)\)

\(=\left(x^2-2x+1+1\right)\left(x^2-3x+\frac{9}{4}+\frac{3}{4}\right)\)

\(=\left(\left(x-1\right)^2+1\right)\left(\left(x-\frac{3}{4}\right)^2+\frac{3}{4}\right)\)

Dễ thấy: \(\left(x-1\right)^2+1>0;\left(x-\frac{3}{4}\right)^2+\frac{3}{4}>0\)

Suy ra ta có ĐPCM

30 tháng 1 2019

2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)

\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)

\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)

30 tháng 1 2019

3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)

Dễ thấy

 \(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)

Từ phương trình đầu ta có:

\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)

\(\Leftrightarrow y\le1\)

Vậy \(x=y=1\)

23 tháng 7 2016

A là bình phương thiếu một hiệu trong hằng đẳn thức số 7 nó luôn lớn hơn 0

B thì 2 bình phương luôn lớn hơn bằng 0 nếu x thỏa mãn làm (2x - 1)^2 lớn hơn bằng 0 thì thỏa mã làm cho x + 2 lớn hơn 0

2 cái + lại lớn hơn ko

2 tháng 8 2017

b)

Đề: Cho a, b, c > 0 và abc = ab + bc + ca. Chứng minh rằng: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\le\frac{3}{16}\)

~ ~ ~ ~ ~

\(abc=ab+bc+ca\)

\(\Leftrightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta có:

\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)

\(\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{2\left(b+c\right)}+\frac{1}{2\left(a+b\right)}+\frac{1}{b+c}+\frac{1}{2\left(a+c\right)}+\frac{1}{a+b}\right)\)

\(=\frac{1}{4}\left[\frac{3}{2\left(a+c\right)}+\frac{3}{2\left(b+c\right)}+\frac{3}{2\left(a+b\right)}\right]\)

\(=\frac{3}{8}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{a+b}\right)\)

\(\le\frac{3}{32}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{3}{16}\) (đpcm)

Dấu "=" xảy ra khi a = b = c 

23 tháng 7 2018

Ta có: \(x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\in R\)

Thấy \(x^8\ge0;x^5< x^8\Rightarrow x^8-x^5\ge0\)

\(\Rightarrow x^8-x^5+x^2-x+1>0\forall x\in R.\)(đpcm) 

24 tháng 7 2018

sai rồi bạn ơi

15 tháng 5 2018

xin lỗi bạn mình ngu bất đẳng thức lắm