Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x-y+z\right)^2=x^2-y^2+z^2\)
\(\Leftrightarrow x^2+y^2+z^2-2xy+2xz-2yz=x^2-y^2+z^2\)
\(\Leftrightarrow2y^2-2xy+2xz-2yz=0\)
\(\Leftrightarrow2y\left(y-z\right)-2x\left(y-z\right)=0\)
\(\Leftrightarrow2\left(y-x\right)\left(y-z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x\\y=z\end{matrix}\right.\)
Với x = y \(\Rightarrow\left(x-y+z\right)^n=z^n;x^n-y^n+z^n=z^n\)
\(\Rightarrow\left(x-y+z\right)^n=x^n-y^n+z^n\) ( 1 )
Với y = z \(\Rightarrow\left(x-y+z\right)^n=x^n;x^n-y^n+z^n=x^n\)
\(\Rightarrow\left(x-y+z\right)^n=x^n-y^n+z^n\) ( 2 )
Từ ( 1 ) ; ( 2 ) => ĐPCM
Câu 2:
\(\left\{{}\begin{matrix}y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\\x+y>=2\sqrt{xy}\end{matrix}\right.\Leftrightarrow\left(x+z\right)\left(x+y\right)\left(y+z\right)>=8xyz\)
Dấu = xảy ra khi x=y=z
b: \(=3x^{n-2+n+2}-3x^{n-2}y^{n+2}+3x^{n-2}y^{n+2}-y^{n+2+n-2}\)
\(=3x^{2n}-y^{2n}\)
c: \(=a^3+ab^2+ac^2-a^2b-abc-a^2c+a^2b+b^3+bc^2-ab^2-b^2c-abc+a^2c+b^2c+c^3-abc-bc^2-ca^2\)
\(=a^3+b^3+c^3-3acb\)
Áp dụng BĐT Cauchy-Schwarz, ta có:
\(VT\ge\dfrac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=\dfrac{9}{\left(x+y+z\right)^2}=9\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Áp dụng bđt AM-GM ta có :
\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\) (do x+y+z=2)
Vậy ....
Áp dụng bđt Cô-si vào các số x,y,z dương:
\(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2}{y+z}\cdot\dfrac{y+z}{4}}=x\)
Chứng minh tương tự :\(\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y\) , \(\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\)
\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}+\dfrac{1}{2}\left(x+y+z\right)\ge x+y+z\)
\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{1}{2}\left(x+y+z\right)=1\)
Dấu bằng xảy ra của cả 2 cách là x=y=z=\(\dfrac{2}{3}\)