Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
\(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}=\frac{2n+3n^2+n^3}{6}=\frac{\left(n^3+n^2\right)+\left(2n^2+2n\right)}{6}\)
\(=\frac{n^2\left(n+1\right)+2n\left(n+1\right)}{6}=\frac{n\left(n+1\right)\left(n+2\right)}{6}\)
Vì \(n\left(n+1\right)\left(n+2\right)\) là tích hai số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮\)2 và 3
Mà (2;3) = 1 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)
Hay \(\frac{n\left(n+1\right)\left(n+2\right)}{6}\) là số nguyên
Vậy \(A\) luôn có gt là số nguyên
1) a. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath
Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3)
=(n-3)(n^2-1)
=(n-3)(n-1)(n+1)
Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
=8(k-1)k(k+1)
vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ
Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
=n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120
ta có : \(\left(n+6\right)^2-\left(n-6\right)^2=n^2+12n+36-\left(n^2-12n+36\right)\)
\(=n^2+12n+36-n^2+12n-36=24n⋮24\)
\(\Leftrightarrow24n\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)
\(\Leftrightarrow\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)
vậy \(\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\) (đpcm)
Mình chỉ biết câu 2 thoi được hong?
n2+n+1
= n2+n+\(\frac{1}{4}\)+\(\frac{3}{4}\)
= (n+\(\frac{1}{2}\))2 +\(\frac{3}{4}\)
Chứng tỏ đó không phải là số chính phương
Trả lời câu 1 thôi nha
Xét \(ab+cd=ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)\)Vì a^2+b^2=c^2+d^2=1
\(=\)\(abc^2+abd^2+a^2cd+b^2cd\)
\(=ad\left(bd+ac\right)+bc\left(bd+ac\right)\)
\(=\left(ad+bc\right)\left(bd+ac\right)=0\left(đpcm\right)\)
\(=\dfrac{2n}{6}+\dfrac{3n^2}{6}+\dfrac{n^3}{6}=\dfrac{n^3+3n^2+2n}{6}=\dfrac{n\left(n+1\right)\left(n+2\right)}{6}\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)
hay \(\dfrac{n\left(n+1\right)\left(n+2\right)}{6}\) là số nguyên