Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN\(\left(3n+1,4n+1\right)=d\)
=) \(3n+1⋮d
\)=) \(4\left(3n+1\right)⋮d\)=) \(12n+4⋮d\)
\(4n+1⋮d\)=) \(3\left(4n+1\right)⋮d\)=) \(12n+3⋮d\)
=) \(\left(12n+4\right)-\left(12n+3\right)⋮d\)
=) \(12n+4-12n-3⋮d\)
=) \(1⋮d\)=) \(d\inƯ\left(1\right)=1\)
=) UCLN\(\left(3n+1,4n+1\right)=1\)
Vậy \(3n+1,4n+1\)là 2 số nguyên tố cùng nhau ( ĐPCM )
a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:
2a + 1 = n^2 ﴾1﴿
3a +1 = m^2 ﴾2﴿
từ ﴾1﴿ => n lẻ, đặt: n = 2k+1, ta được:
2a + 1 = 4k^2 + 4k + 1 = 4k﴾k+1﴿ + 1
=> a = 2k﴾k+1﴿
vậy a chẵn .
a chẳn => ﴾3a +1﴿ là số lẻ và từ ﴾2﴿ => m lẻ, đặt m = 2p + 1
﴾1﴿ + ﴾2﴿ được:
5a + 2 = 4k﴾k+1﴿ + 1 4p﴾p+1﴿ + 1
=> 5a = 4k﴾k+1﴿ + 4p﴾p+1﴿
mà 4k﴾k+1﴿ và 4p﴾p+1﴿ đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
ta cần chứng minh a chia hết cho 5:
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9
xét các trường hợp:
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 ﴾vô lý﴿
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 ﴾vô lý﴿ ﴾vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7﴿
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 ﴾vô lý﴿
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 ﴾vô lý﴿
=> a chia hết cho 5 5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40
hay : a là bội số của 40
a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:
2a + 1 = n^2 ﴾1﴿
3a +1 = m^2 ﴾2﴿
từ ﴾1﴿ => n lẻ, đặt: n = 2k+1, ta được:
2a + 1 = 4k^2 + 4k + 1 = 4k﴾k+1﴿ + 1
=> a = 2k﴾k+1﴿
vậy a chẵn .
a chẳn => ﴾3a +1﴿ là số lẻ và từ ﴾2﴿ => m lẻ, đặt m = 2p + 1
﴾1﴿ + ﴾2﴿ được:
5a + 2 = 4k﴾k+1﴿ + 1 4p﴾p+1﴿ + 1
=> 5a = 4k﴾k+1﴿ + 4p﴾p+1﴿
mà 4k﴾k+1﴿ và 4p﴾p+1﴿ đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
ta cần chứng minh a chia hết cho 5:
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9
xét các trường hợp:
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 ﴾vô lý﴿
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 ﴾vô lý﴿ ﴾vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7﴿
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 ﴾vô lý﴿
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 ﴾vô lý﴿
=> a chia hết cho 5 5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40
hay : a là bội số của 40
Lời giải:
Gọi $d$ là ƯCLN của $(2n+1, 2n-1)$
Ta có: $2n+1\vdots d; 2n-1\vdots d$
$\Rightarrow (2n+1)-(2n-1)\vdots d$ hay $2\vdots d$
$\Rightarrow d=\left\{1;2\right\}$
Nếu $d=2$ thfi $2n+1\vdots 2$ (vô lý vì $2n+1$ lẻ)
$\Rightarrow d=1$
Tức là $2n-1, 2n+1$ nguyên tố cùng nhau.
Gọi \(d=ƯCLN\left(3n+1;4n+2\right)\left(d\in N\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+1⋮d\\4n+1⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12n+4⋮d\\12n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow d=1\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(3n+1;4n+1\right)=1\)
\(\Leftrightarrow3n+1;4n+1\) nguyên tố cùng nhau với mọi \(n\in N\)
Gọi \(d\) = ƯCLN (3n + 1: 4n + 2).
\(\Leftrightarrow\left\{{}\begin{matrix}3n+1⋮d\\4n+1⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(3n+1\right)⋮d\\3\left(4n+1\right)⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12n+4⋮d\\12n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(12n+4\right)-\left(12n+3\right)⋮d\)
\(\Leftrightarrow12n+4-12n-3⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(3n+1\) và \(4n+1\) nguyên tố cùng nhau với mọi \(n\in N\)* .