K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

minh bo tay

6 tháng 4 2020

bó tay rùi

18 tháng 6 2016

a=b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức 
Ta có các tính chất cua đồng dư thức và các tính chất sau: 
Cho x là số tự nhiên 
Nếu x lẻ thì => x^2 =1 (mod 8) 
x^2 =-1(mod 5) hoặc x^2=0(mod 5) 
Nếu x chẵn thì x^2=-1(mod 5) hoặc x^2 =1(mod 5) hoặc x^2=0(mod 5) 
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt 
3a+1=m^2 
2a+1 =n^2 
=> m^2 -n^2 =a (1) 
m^2 + n^2 =5a +2 (2) 
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3) 
Từ (2) ta có (m^2 + n^2 )=2(mod 5) 
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5) 
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5 
từ pt ban đầu => n lẻ =>n^2=1(mod 8) 
=> 3n^2=3(mod 8) 
=> 3n^2 -1 = 2(mod 8) 
=> (3n^2 -1)/2 =1(mod 8) 
Từ (3) => m^2 = (3n^2 -1)/2 
do đó m^2 = 1(mod 8) 
ma n^2=1(mod 8) 
=> m^2 - n^2 =0 (mod 8) 
=> a chia hết cho 8 
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40 

16 tháng 9 2018

( 99 - 1 ) : 2 + 1 = 50 ( số )

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

16 tháng 9 2018

\(M=ab+\frac{1}{a^2}+\frac{1}{b^2}\ge ab+\frac{2}{ab}\ge2\sqrt{2}\)

16 tháng 9 2018

11 phút trước (15:52)

Cho a,b >0 và a+b=1. chứng minh rằng: (a+1a )2+(b+1b 2)≥12,5

Mình cần gấp, ai làm nhanh và đúng nhất được 3 ks!

Câu hỏi tương tự Đọc thêm Báo cáo

Toán lớp 9 Bất đẳng thức

VKOOK_BTS

Trả lời

0

Đánh dấu

8 phút trước (15:31)

16 tháng 9 2018

\(\frac{x^4-5x+4}{x^2-2}=5\left(x-1\right)\)

\(\Leftrightarrow\frac{x^4-5x+4}{x^2-2}\left(x^2-2\right)=5\left(x-1\right)\left(x^2-2\right)\)

\(\Leftrightarrow x^4-5x+4=5\left(x-1\right)\left(x^2-2\right)\)

\(\Rightarrow\hept{\begin{cases}x=\pm1\\x=2\\x=3\end{cases}}\)

P/s: ko chắc

16 tháng 9 2018

ĐKXĐ : X2 \(\ne\)2

Ta có: \(\frac{x^4-5x+4}{x^2-2}\)\(5\left(x-1\right)\)\(\Leftrightarrow\frac{\left(x-1\right)\left(x^3+x^2+x-4\right)}{x^2-2}=5\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x^3+x^2+x-4}{x^2-2}-5\right)\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\frac{x^3+x^2+x-4}{x^2-2}-5=0\end{cases}}\)

\(+x-1=0\Rightarrow x=1\)

+)\(\frac{x^3+x^2+x-4}{x^2-2}-5=0\Leftrightarrow x^3+x^2+x-4-5x^2+10=0\)

\(\Leftrightarrow x^3-4x^2+x+6=0\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x-3\right)=0\)\(\Leftrightarrow x=2\)hoặc \(x=3\)

hoặc x=-1

Bạn tự kết luận nhé..

17 tháng 6 2019

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vế trái bằng vế phải nên đẳng thức được chứng minh.

* Với n = 1, ta có: 2 - 1 2 = 9 - 8

* Với n = 2, ta có:  3 - 2 2 = 25 - 24

* Với n = 3, ta có:  4 - 3 2 = 49 - 48

* Với n = 4, ta có:  5 - 4 2 = 81 - 80