Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta chứng minh A>=2 (1) thật vậy
\(A\ge2\Leftrightarrow\left(x+y+z\right)^2\ge4\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge x^2+y^2+z^2+xyz\)
\(\Leftrightarrow2xy+2yz+2xz\ge xyz\)
từ giả thiết => \(0\le x;y;z\le2\)do đó \(2xy+2yz+2zx\ge2xy\ge xyz\)
vậy (1) được chứng minh. dấu "=" xảy ra khi (x;y;z)=(2;0;0) và các hoán vị
Áp dụng BĐT Mincopxki ta có:
\(VT=\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\)
\(=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}+\sqrt{\left(y+\frac{z}{2}\right)^2+\frac{3z^2}{4}}+\sqrt{\left(x+\frac{z}{2}\right)^2+\frac{3z^2}{4}}\)
\(\ge\sqrt{\left(x+y+z+\frac{x+y+z}{2}\right)^2+\left(\frac{\sqrt{3}\left(x+y+z\right)}{2}\right)^2}\)
\(=\sqrt{\frac{9\left(x+y+z\right)^2}{4}+\frac{3\left(x+y+z\right)^2}{4}}\)
\(=\sqrt{3\left(x+y+z\right)^2}=\sqrt{3}\left(x+y+z\right)=VP\)
a.ta có:
\(x^2+y^2+z^2-\left(xy+yz+zx\right)\)
\(=\frac{1}{2}\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]\)
\(=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)
vì \(\left(x-y\right)^2\ge0,\left(y-z\right)^2\ge0,\left(z-x\right)^2\ge0\)
do đó :
\(x^2+y^2+z^2\ge xy+yz+zx\)
dấu = xảy ra khi và chỉ khi x-y-z
b. ta có:
\(x^2+y^2+z^2-\left(2xy-2zx+2yz\right)\)
\(=x^2+y^2+z^2-2xy-2zx+2yz\)
\(=\left(x-y+z\right)^2\ge0\)
do đó \(x^2+y^2+z^2\ge2xy-2xz+2yz\)