\(\in\)Q thì giá trị của biểu thức sau luôn luôn là sô dương 

M=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

Hiển nhiên mẫu lớn hơn 0,ta chứng minh tử >0 là xong ^^

\(3\left(x^2+1\right)+x^2y^2+y^2-2\)

\(=3x^2+3+x^2y^2+y^2-2\)

\(=3x^2+x^2y^2+y^2+1>0\rightarrowđpcm\)

21 tháng 2 2020

ko hiểu ,mày bị điên à . Anh thách mày giải được đấy !!!!  Giải được cho tiền nhé !!!! Bye .

23 tháng 3 2016

Xét tử và mẫu của phân số này.

Ta thấy mẫu số là (x+y)^2+5 có (x+y)^2>=0 

                                               5 > 0

=> (x+y)^2+5>0

Ta thấy tử số là 3(x^2+1)+x^2*y^2+y^2-2 có

+) x^2+1>=1 ( do x^2>=0) => 3(x^2+1)>=3

+) x^2*y^2 >=0

+)y^2 >=0

Từ các điều trên => 3(x^2+1)+x^2*y^2+y^2>=3

                        => 3(x^2+1)+x^2*y^2+y^2-2>=1>0

=> M dương

Vậy M luôn dương với mọi x và y

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

22 tháng 7 2020

a) Thay x = \(\sqrt{2}\)vào biểu thức ta có : 

\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)

Giá trị của A khi x = \(\sqrt{2}\)là 0

b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)

Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)

Giá trị của B khi x = 3 là 32

d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)

Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)

=> D = 8

e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)

Lại có x + y + z = 0

=> x + y = -z

=> x + z = - y 

=> y + z = - x

Khi đó E = \(\frac{-xyz}{xyz}=-1\)

\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)

Hệ số \(\frac{-125}{27}\)

Biến : a8b2x16y7zn + 2

22 tháng 7 2020

câu c bạn ghi đề rõ hơn thì mình sẽ giải luôn

14 tháng 8 2020

a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)=> \(\left(2x-1\right)^2+3\ge3\)

=> \(\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\forall x\)

Dấu "=" xảy ra <=> 2x - 1 = 0 <=>  x = 1/2

Vậy MaxB = 5/3 khi x = 1/2

b) x = -5; y = 3 => P = 2. (-5).(-5 + 3 - 1) + 32 + 1 = -10. (-3) + 9 + 1 = 30 + 10 = 40

P = 2x(x + y - 1) + y2 + 1

P = 2x2 + 2xy - 2x + y2  + 1

P = (x2 + 2xy + y2) + (x2 - 2x + 1)

P = (x + y)2 + (x - 1)2 \(\ge\)0

=> P luôn nhận giá trị không âm với mọi x;y

15 tháng 8 2020

a) Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x-1\right)^2+3\ge3\forall x\)

\(\Rightarrow\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\forall x\)

hay \(B\le\frac{5}{3}\)

Dấu " = " xảy ra \(\Leftrightarrow2x-1=0\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(maxB=\frac{5}{3}\Leftrightarrow x=\frac{1}{2}\)

b) - Thay \(x=-5\)và \(y=3\)vào biểu thức ta được:

\(P=2.\left(-5\right).\left(-5+3-1\right)+3^2+1=30+9+1=40\)

- Ta có: \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)=\left(x+y\right)^2+\left(x-1\right)^2\)

Vì \(\left(x+y\right)^2\ge0\forall x,y\)\(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+y\right)^2+\left(x-1\right)^2\ge0\forall x,y\)

hay P luôn nhận giá trị không âm với mọi x, y ( đpcm )

15 tháng 8 2017

Nhiều quá bạn ơi ( Hhôm nào cũng thấy đăng 6,7 câu )

15 tháng 8 2017

giúp người đi bạn

1 tháng 9 2019

Đáp án đúng nhưng cách làm này là sai

1 tháng 9 2019

bày em cách làm với được không ạ? em tự suy ra chứ thầy cô chưa bày j cả nên là em cx chưa hiểu cho lắm mong anh giúp đỡ ạ