\(x^4+6x^3+11x^2+6x\) chia hết cho 24

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

\(x^4+6x^3+11x^2+6x\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

\(x\in Z\Rightarrow x;x+1;x+2;x+3\) là 4 số nguyên liên tiếp

\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) là tích 4 số nguyên liên tiếp

Suy ra \(\hept{\begin{cases}\text{có tích 2 số chẵn liên tiếp }\Rightarrow⋮8\\\text{có một số chia hết 3}\\\left(8;3\right)=1\end{cases}}\)

\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)⋮24\)

23 tháng 11 2018

Ta có: x4 + 6x+ 11x2 + 6x + 1

= x(x3 + 6x2 + 11x + 6) + 1

= x(x3 + 3x2 + 3x2 + 9x + 2x + 6) + 1

= x[x2(x + 3) + 3x(x + 3) + 2(x + 3)] + 1

= x(x + 3)(x2 + 3x + 2) + 1

= (x2 + 3x)(x2 + 3x + 2) + 1

=> (x2 + 3x + 1 - 1)(x2 + 3x + 1 + 1) + 1

= (x2 + 3x + 1)2 - 1 + 1

= (x2 + 3x + 1)2

=> x4 + 6x+ 11x2 + 6x + 1 là số chính phương

4 tháng 2 2019

Giả sử pt có nghiệm thì nghiệm đó k phải là 0. Vì vậy ta có:

\(x^4+6x^3+11x^2+6x+1=x^2\left(x^2+6x+11+\frac{6}{x}+\frac{1}{x^2}\right)\)

\(=x^2\left[\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11\right]\)

\(=x^2\left[\left(x+\frac{1}{x}\right)^2-2+6\left(x+\frac{1}{x}\right)+11\right]\)

\(=x^2\left[\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9\right]\)

\(=x^2\left(x+\frac{1}{x}+3\right)^2=\left(x^2+3x+1\right)^2\) là scp

NV
22 tháng 4 2020

Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\) ta được:

a/ \(x^2+\frac{1}{x^2}+6\left(x+\frac{1}{x}\right)+11=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(\Leftrightarrow t^2-2+6t+11=0\Leftrightarrow\left(t+3\right)^2=0\)

\(\Rightarrow t=-3\Rightarrow x+\frac{1}{x}=-3\Leftrightarrow x^2+3x+1=0\) (casio)

b/ \(x^2+\frac{1}{x^2}-10\left(x+\frac{1}{x}\right)+26=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(\Leftrightarrow t^2-2-10t+26=0\)

\(\Leftrightarrow t^2-10t+24=0\Rightarrow\left[{}\begin{matrix}t=6\\t=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{1}{x}=4\\x+\frac{1}{x}=6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-4x=1=0\\x^2-6x+1=0\end{matrix}\right.\) (casio)

13 tháng 9 2016

u = (x + y)2 - 2xy = 62 - 2 = 34

Vây u \(\in\)Z

Và u không chia hết cho 5

13 tháng 9 2016

\(x^2-6x+1=\left(x-a\right)\left(x-b\right)=0.\)

=>\(\hept{\begin{cases}a+b=6\\ab=1\end{cases}}\)

=> \(u=a^2+b^2=\left(a+b\right)^2-2ab=36-2=34\in Z\) và không chia hết cho 5

2 tháng 3 2020

\(x^2-6x+9=0\)     (1)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của phương trình (1) là \(S=\left\{3\right\}\)

\(x^3-6x^2+11x-6=0\)

\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(2x-6\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x=3\)

hoặc \(x=1\)

hoặc \(x=2\)

Vậy tập nghiệm của phương trình (2) là \(S=\left\{1;2;3\right\}\)

Mà 2 phương trình trên có 1 nghiệm chung

\(\Rightarrow\)Tập nghiệm của 2 phương trình là \(S=\left\{3\right\}\)

20 tháng 7 2017

câu 1 khó ghê,anh mình chỉ còn mỗi câu 1 thôi

3,

đặt \(\hept{\begin{cases}\sqrt{x^2+y^2}=a\\\sqrt{y^2+z^2}=b\\\sqrt{z^2+x^2}=c\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+y^2=a^2\\y^2+z^2=b^2\\z^2+x^2=c^2\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=\frac{a^2+c^2-b^2}{2}\\y^2=\frac{b^2+a^2-c^2}{2}\\z^2=\frac{b^2+c^2-a^2}{2}\end{cases}}}\)

\(\Leftrightarrow M=\frac{a^2+c^2-b^2}{2\left(y+z\right)}+\frac{b^2+a^2-c^2}{2\left(z+x\right)}+\frac{c^2+b^2-a^2}{2\left(x+y\right)}\)

áp dụng bunhia ta có:

\(\hept{\begin{cases}\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\\\left(y^2+z^2\right)\left(1+1\right)\ge\left(y+z\right)^2\\\left(z^2+x^2\right)\left(1+1\right)\ge\left(z+x\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}2a^2\ge\left(x+y\right)^2\\2b^2\ge\left(y+z\right)^2\\2c^2\ge\left(z+x\right)^2\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{2}a\ge x+y\\\sqrt{2}b\ge y+z\\\sqrt{2}c\ge z+x\end{cases}}}\)

\(\Rightarrow M\ge\frac{a^2+c^2-b^2}{\sqrt{2}b}+\frac{a^2+b^2-c^2}{\sqrt{2}c}+\frac{c^2+b^2-a^2}{\sqrt{2}a}=\frac{1}{\sqrt{2}}\left(\frac{a^2}{b}+\frac{c^2}{b}-b+\frac{a^2}{c}+\frac{b^2}{c}-c+\frac{c^2}{a}+\frac{b^2}{a}-a\right)\)\(\ge\frac{1}{\sqrt{2}}\left(\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}-a-b-c\right)=\frac{1}{\sqrt{2}}\left(a+b+c\right)=\frac{6}{\sqrt{2}}\)