Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+6x^3+11x^2+6x\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
\(x\in Z\Rightarrow x;x+1;x+2;x+3\) là 4 số nguyên liên tiếp
\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) là tích 4 số nguyên liên tiếp
Suy ra \(\hept{\begin{cases}\text{có tích 2 số chẵn liên tiếp }\Rightarrow⋮8\\\text{có một số chia hết 3}\\\left(8;3\right)=1\end{cases}}\)
\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)⋮24\)
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\) ta được:
a/ \(x^2+\frac{1}{x^2}+6\left(x+\frac{1}{x}\right)+11=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(\Leftrightarrow t^2-2+6t+11=0\Leftrightarrow\left(t+3\right)^2=0\)
\(\Rightarrow t=-3\Rightarrow x+\frac{1}{x}=-3\Leftrightarrow x^2+3x+1=0\) (casio)
b/ \(x^2+\frac{1}{x^2}-10\left(x+\frac{1}{x}\right)+26=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(\Leftrightarrow t^2-2-10t+26=0\)
\(\Leftrightarrow t^2-10t+24=0\Rightarrow\left[{}\begin{matrix}t=6\\t=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{1}{x}=4\\x+\frac{1}{x}=6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-4x=1=0\\x^2-6x+1=0\end{matrix}\right.\) (casio)
b2
\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)
Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)
Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)
và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)
Do đó \(VT\ge VF\)
Dấu = xảy ra khi\(x=\frac{1}{2}\)
@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng
Ta có: x4 + 6x3 + 11x2 + 6x + 1
= x(x3 + 6x2 + 11x + 6) + 1
= x(x3 + 3x2 + 3x2 + 9x + 2x + 6) + 1
= x[x2(x + 3) + 3x(x + 3) + 2(x + 3)] + 1
= x(x + 3)(x2 + 3x + 2) + 1
= (x2 + 3x)(x2 + 3x + 2) + 1
=> (x2 + 3x + 1 - 1)(x2 + 3x + 1 + 1) + 1
= (x2 + 3x + 1)2 - 1 + 1
= (x2 + 3x + 1)2
=> x4 + 6x3 + 11x2 + 6x + 1 là số chính phương
Giả sử pt có nghiệm thì nghiệm đó k phải là 0. Vì vậy ta có:
\(x^4+6x^3+11x^2+6x+1=x^2\left(x^2+6x+11+\frac{6}{x}+\frac{1}{x^2}\right)\)
\(=x^2\left[\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11\right]\)
\(=x^2\left[\left(x+\frac{1}{x}\right)^2-2+6\left(x+\frac{1}{x}\right)+11\right]\)
\(=x^2\left[\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9\right]\)
\(=x^2\left(x+\frac{1}{x}+3\right)^2=\left(x^2+3x+1\right)^2\) là scp