K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

\(A=5^{n+2}+26.5^n+8^{2n+1}\left(n\in N\right)\)

\(=25.5^n+26.5^n+8.64^n\)

\(=5^n\left(25+26\right)+8.64^n\)

\(=5^n\left(59-8\right)+8.64^n\)

\(=59.5^n+8\left(64^n-5^n\right)\)

\(=59.5^n+8\left(64-5\right)\left(64^{n-1}+64^{n-2}.5+...\right)\)

\(=59.5^n+8.59\left(64^{n-1}+64^{n-2}.5+...\right)\)

\(=59\left[5^n+8\left(64^{n-1}+64^{n-2}.5+...\right)\right]⋮59\)

Vậy \(A⋮59\)\(\forall n\in N\)(đpcm)

AH
Akai Haruma
Giáo viên
9 tháng 7

Cho $n=1$ thì $A$ không chia hết cho $59$. Bạn xem lại đề nhé.

27 tháng 1 2018

A=\(5^{n+2}+26.5^n+8^{2n+1}\)

=>A=\(5^n.25+26.5^n+64^n.8\)

=>A=\(5^n.\left(25+26\right)+64^n.8^{ }\)

=>A=\(5^n.51+64^n.8^{ }\)

=>A=\(5^n.\left(59-8\right)+64^n.8^{ }\)

=>A=\(5^n.59-5^n.8+64^n.8\)

=>A=\(5^n.59+8.\left(64^n-5^n\right)\)

\(5^n.59chiahếtcho59\)

\(64^n-5^n\)chia hết cho 64-5=59

=>A chia hết cho 59(đpcm)

chúc bạn hộc tốt

AH
Akai Haruma
Giáo viên
21 tháng 12 2021

Lời giải:

$A=5^{n+2}+26.5^n+8^{2n+1}=5^n(5^2+26)+8^{2n+1}$

$=51.5^n+64^n.8$

$\equiv 51.5^n+5^n.8\equiv 5^n(51+8)\equiv 5^n.59\equiv 0\pmod {59}$

Ta có đpcm

21 tháng 12 2021

Cô ơi e chưa học cái (≡) này ạ

 

 

 

3 tháng 12 2017

\(A=5^{n+2}+26.5^n+8^{2n+1}\)

\(A=5^n\left(5^2+26\right)+\left(8^2\right)^n.8\)

\(A=5^n.51+64^n.8\)

\(A=5^n.59-5^n.8+64^n.8\)

\(A=5^n.59+8.\left(-5^n+64^n\right)\)

Ta có: \(\left(5^n.59\right)⋮59\left(1\right)\)

\(\left(-5^n+64^n\right)\) luôn chia hết cho \(\left(-5+64\right)=59\Leftrightarrow8.\left(-5^n+64^n\right)⋮59\left(2\right)\)

Từ (1)(2)⇒ A\(⋮\)59

3 tháng 9 2018

a,  11n+2+122n+1

= 11n.121+12.122n

= 11n.(133-12)+12.122n

= 11n.133-11nn .12+12.122n

=12.(144n-11n)+11n. 133

Có 144nn-11n \(⋮\)144-11=133

11n.133\(⋮\)133

=> dpcm

6 tháng 8 2016

a,bn gõ đề sai nhé: phải là 11n+2 ms làm đc

Ta có: \(11^{n+2}+12^{2n+1}=11^n.11^2+12^{2n}.12=11^n.121+144^n.12\)

\(=11^n.\left(133-12\right)+144^n.12=11^n.133-11^n.12+144^n.12\)

\(=11^n.133+144^n.12-11^n.12=11^n.133+12.\left(144^n-11^n\right)\)

\(144^n-11^n=\left(144-11\right).\left(144^{n-1}+144^{n-2}11+144^{n-3}11^2+....+144^211^{n-3}+14411^{n-2}+11^{n-1}\right)\) nên 144n-11n luôn chia hết cho 133

Mà 11n.133 cũng chia hết cho 133

=>\(11^{n+2}+12^{2n+1}\) chia hết cho 133 (đpcm)

b,\(5^{n+2}+26.5^n+8^{2n+1}\)

\(=5^n.5^2+26.5^n+8^{2n}.8=5^n.25+26.5^n+64^n.8\)

\(=5^n.25+26.5^n+64^n.8\)

\(=5^n.25+34.5^n-8.5^n+64^n.8=5^n.25+34.5^n+64^n.8-8.5^n\)

\(=59.5^n+8.\left(64^n-5^n\right)\)

\(64^n-5^n=\left(64-5\right).\left(64^{n-1}+64^{n-2}5+....+64.5^{n-2}+5^{n-1}\right)\) nên chia hết cho 59

Mà 59.5n cũng chia hết cho 59

=>\(5^{n+2}+26.5^n+8^{2n+1}\) chia hết cho 59 (đpcm)

8 tháng 10 2019

a,sai nha bn