\(11^{n+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

a, Gọi ƯCLN(5n+7,2n+3)=d,ta có:

5n+7 chia hết cho d => 2(5n+7) chia hết cho d => 10n+14 chia hết cho d

2n+3 chia hết cho d => 5(2n+3) chia hết cho d => 10n+15 chia hết cho d

=>10n+15-(10n+14) chia hết cho d

=> 1 chia hết cho d

=> d=1

=> ƯCLN(5n+7,2n+3)=1

=> đpcm

b, Ta có: \(11^{n+2}+12^{2n+1}\) 

\(=11^n.121+12^{2n}.12\)

\(=11^n.121+144^n.12\)

\(=11^n.121+12.11^n+144^n.12-12.11^n\)

\(=11^n\left(121+12\right)+12\left(144^n-11^n\right)\)

\(=11^n.133+12.\left(144^n-11^n\right)\)

Mà \(144^n-11^n⋮144-11=133\)

\(\Rightarrow11^{n+2}+12^{2n+1}⋮133\)

31 tháng 1 2018

a) Gọi d là ƯCLN(n, n + 1), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow\left(n+1\right)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n,n+1\right)=1\)

\(\Rightarrow\) \(\frac{n}{n+1}\) là phân số tối giản.

b) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)

\(\Rightarrow\) \(\frac{n+1}{2n+3}\) là phân số tối giản.

31 tháng 1 2018

c) Gọi d là ƯCLN(21n + 4, 14n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(21n+4,14n+3\right)=1\)

\(\Rightarrow\) \(\frac{21n+4}{14n+3}\) là phân số tối giản.

d) Gọi d là ƯCLN(2n + 3, 3n + 5), d ∈ N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,3n+5\right)=1\)

\(\Rightarrow\) \(\frac{2n+3}{3n+5}\) là phân số tối giản.

8 tháng 3 2017

gọi d là ước chung nếu có của cả a và b 
==> a chia hết cho d nên 8a cũng chia hết cho d 
đồng thời : b chia hết cho d nên b^2 cũng chia hết cho d ( b mũ 2 ) 
==> ( b^2 - 8.a ) chia hết cho d 
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n^2 + n ) /2 
và b^2 = ( 2n + 1 )^2 = 4n^2 + 4n + 1 
==> : (b^2 - 8a ) = ( 4n^2 + 4n +1 ) - ( 4n^2 + 4n ) = 1 
vậy : ( 8a -- b^2 ) chia hết cho d <==> 1 chia hết cho d => d = 1 (đpcm)
 

a) Ta có: (3n+2,5n+3)=(3n+2,2n+1)=(n+1,2n+1)=(n+1,n)=1(3n+2,5n+3)=(3n+2,2n+1)=(n+1,2n+1)=(n+1,n)=1.

Các câu sau chứng minh tương tự.

k nha pls

26 tháng 8 2016

a) Gọi d là ƯCLN(7n+10;5n+7)

Ta có: \(7n+10⋮d\Rightarrow5\left(7n+10\right)=35n+50⋮d\)

           \(5n+7⋮d\Rightarrow7\left(5n+7\right)=35n+49⋮d\)

\(\Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{1;-1\right\}\Rightarrow d=1;-1\)

=>  7n + 10 và 5n + 7 nguyên tố cùng nhau

b) Gọi d là UCLN(2n+3;4n+8)

Ta có: \(4n+8⋮d\)

         \(2n+3⋮d\Rightarrow2\left(2n+3\right)=4n+6⋮d\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)=2⋮d\Rightarrow d\inƯ\left(2\right)=\left\{1;-1;-2;2\right\}\)

Mà vì 2n+3 là số lẻ => d={1;-1}

Vậy 2n + 3 và 4n + 8 nguyên tố cùng nhau