K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Lời giải:

a)

Bổ đề: Tam giác $ABC$ có \(\angle A=\alpha\) thì \(S_{ABC}=\frac{AB.AC\sin \alpha}{2}\)

Chứng minh: Từ $B$ kẻ đường cao $BH$ của tam giác

Khi đó:\(S_{ABC}=\frac{BH.AC}{2}\) (1)

\(\frac{BH}{AB}=\sin \alpha\) (TH góc A tù thì ta có: \(\frac{BH}{AB}=\sin (180^0-\alpha)=\sin \alpha\) ) \(\Rightarrow BH=AB.\sin \alpha\) (2)

Từ (1).(2) suy ra \(S_{ABC}=\frac{AB.AC.\sin \alpha}{2}\)

--------------------------------------------

Quay lại bài toán:

a)

\(S_{ABCD}=S_{ABC}+S_{ADC}=\frac{ab.\sin \angle ABC}{2}+\frac{cd.\sin \angle ADC}{2}\)

\(\sin ABC, \sin ADC\leq 1\Rightarrow S_{ABCD}\leq \frac{ab}{2}+\frac{cd}{2}=\frac{ab+cd}{2}\)

Ta có đpcm.

b)

* Vế đầu tiên:

\(2S=S_{ABC}+S_{ADC}+S_{BAD}+S_{BCD}\)

\(=\frac{ac\sin \angle ABC}{2}+\frac{cd\sin \angle ADC}{2}+\frac{ad.\sin \angle BAD}{2}+\frac{bc\sin \angle BCD}{2}\)

\(\leq \frac{ac}{2}+\frac{cd}{2}+\frac{ad}{2}+\frac{bc}{2}=\frac{ac+cd+ad+bc}{2}\)

\(\Leftrightarrow 4S\leq ac+cd+ad+bc=(a+c)(b+d)\) (đpcm)

* Vế sau:

\(p^2=\left(\frac{a+b+c+d}{2}\right)^2=\frac{[(a+c)+(b+d)]^2}{4}\)

Áp dụng bđt AM-GM: \((a+c)+(b+d)\geq 2\sqrt{(a+c)(b+d)}\)

\(\Rightarrow 4p^2=[(a+c)+(b+d)]^2\geq 4(a+c)(b+d)\)

\(\Rightarrow p^2\geq (a+c)(b+d)\) (đpcm)

c)

Theo phần b, ta đã chứng minh được:

\(S\leq \frac{(a+c)(b+d)}{4}\) (1)

Mặt khác, áp dụng BĐT AM-GM:

\(a^2+b^2\geq 2ab\)

\(a^2+d^2\geq 2ad\)

\(b^2+c^2\geq 2bc\)

\(c^2+d^2\geq 2cd\)

Cộng theo vế: \(\Rightarrow 2(a^2+b^2+c^2+d^2)\geq 2(ab+ad+bc+cd)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2\geq ab+ad+bc+cd=(a+c)(b+d)\) (2)

Từ \((1);(2)\Rightarrow S\leq \frac{a^2+b^2+c^2+d^2}{4}\) (đpcm)

24 tháng 4 2018

bạn có thể làm theo cách này:

nhân hai vế với 2 sau đó chuyển toàn bộ hạng tử của VP sang VT.

Lúc này bạn gộp lại sao cho có tổng các bình phương ,

24 tháng 4 2018

Ta có : \(a^2+b^2+1>ab+a+b\) \((\forall a,b\in R)\)

\(\Leftrightarrow2a^2+2b^2+2>2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)>0\left(\text{luôn đúng }\right)\)\(\Rightarrow\text{ đpcm}\)

19 tháng 11 2017

Xét (a^2+c^2).(b^2+d^2)-(ab+cd)^2

 = a^2b^2+c^2b^2+a^2d^2+c^2d^2-a^2b^2-2abcd-c^2d^2

 = b^2c^2+a^2d^2-2abcd = (bc-ad)^2 >= 0 

=> (ab+cd)^2 <= (a^2+c^2).(b^2+d^2)                     ( bđt này còn được gọi là bđt bunhiacopxki )

=> đpcm

Dấu "=" xảy ra <=> bc-ad=0

<=> bc = ad <=> a/b = c/d

k mk nha

Ta khai triển ra có (ad-bc)2>=0 (đúng với mọi abcd)

Dấu "=" xảy ra khi

ad=bc

9 tháng 5 2018

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\ge0\)

\(\Rightarrow\left(\dfrac{a^2}{4}-ab+b^2\right)+\left(\dfrac{a^2}{4}-ac+c^2\right)+\left(\dfrac{a^2}{4}-ad+d^2\right)+\left(\dfrac{a^2}{4}-ae+e^2\right)\)

\(\Rightarrow\left(\dfrac{a}{2}-b\right)^2+\left(\dfrac{a}{2}-c\right)^2+\left(\dfrac{a}{2}-d\right)^2+\left(\dfrac{a}{2}-e\right)^2\ge0\) (đúng)

Dấu "=" xảy ra khi: \(\dfrac{a}{2}=b=c=d=e\)

9 tháng 5 2018

\(a^2+b^2+c^2+d^2+e^2\ge a.\left(b+c+d+e\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) ( luôn đúng)

7 tháng 6 2020

ae vứt 1 ab ra nha

16 tháng 2 2021

\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow4\left(a^2+b^2+c^2+d^2+e^2\right)\ge4a\left(b+c+d+e\right)\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ac+4c^2\right)\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)

Bất đẳng thức đúng vậy ta có điều phải chứng minh