Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai, phản ví dụ: \(a=b=0,c=1\)
BĐT này chỉ đúng khi a;b;c là độ dài 3 cạnh của 1 tam giác
=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
Xét hiệu a^2+b^2+c^2-ab-ac-bc=1/2.2(a^2+b^2+c^2-ab-ac-bc)
=1/2(2a^2+2b^2+2c^2-2ab-2ac-2bc)
=1/2[(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]
=1/2.[(a-b)^2+(a-c)^2+(b-c)^2]
vì (a-b)^2+(a-c)^2+(b-c)^2>=0
nên 1/2.[(a-b)^2+(a-c)^2+(b-c)^2]>=0
hay a^2+b^2+c^2-ab-ac-bc >=0<=> a^2+b^2+c^2>=ab+ac+bc
a) `4x-2>5x+1`
`<=>-x>3`
`<=>x<-3`
b) Theo BĐT Cauchy:
`a^2+b^2 >= 2ab`
Tương tự:
`b^2+c^2>=2bc`
`c^2+a^2>=2ca`
Cộng vế với vế: `2(a^2+b^2+c^2) >= 2(ab+bc+ca)`
`<=>a^2+b^2+c^2 >= ab+bc+ca` (ĐPCM)
a, \(4x-2>5x+1\Leftrightarrow-x>3\Leftrightarrow x< -3\)
b, Ta có : \(a^2+b^2+c^2\ge ab+bc+ca\)
\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)* luôn đúng *
Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)
\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Phương Khánh Thực ra là ban đầu mình tính dùng Bunyakovski thẳng luôn nhưng thấy bậc khá cao mà không biết BĐT đó đúng hay sai nên mình đảo a, b, c xuống mẫu để dùng BĐT Bunyakovski thì bậc sẽ thấp hơn.
Và không ngờ sự vô tình đó giúp mình gặp may mắn: Đại lượng abc ở \(\frac{abc\left(a+b+c\right)^3}{ab+bc+ca}\) có thể giản ước cho đại lượng abc ở VP. Bậc của BĐT được hạ thấp và mình cứ thế mà chém:))
Áp dụng BĐT Bunyakovski\(,\) ta có: \(\left(a^2b+b^2c+c^2a\right)\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)\ge\left(a+b+c\right)^2\)
Do đó: \(VT\ge\frac{\left(a+b+c\right)^3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{abc\left(a+b+c\right)^3}{ab+bc+ca}\ge9abc\)
Bất đẳng thức cuối tương đương: \(\left(a+b+c\right)^3\ge9\left(ab+bc+ca\right)\) \((\ast)\)
Có: \(3=a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)
\(\therefore\left(ab+bc+ca\right)=\frac{\left(a+b+c\right)^2-3}{2}\)
\((\ast)\) \(\Leftrightarrow\left(a+b+c\right)^3\ge\frac{9}{2}\)\(\Big[(a+b+c)^2-3\Big] \)
\(\Leftrightarrow\frac{1}{2}\left(2a+2b+2c+3\right)\left(a+b+c-3\right)^2\ge0\)
Bất đẳng thức cuối hiển nhiên.
Đẳng thức xảy ra khi \(a=b=c=1\). Done.
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow ab+bc+ca\le1\)
\(\Rightarrow P_{max}=1\) khi \(a=b=c\)
Lại có:
\(\left(a+b+c\right)^2\ge0\) ; \(\forall a;b;c\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow ab+bc+ca\ge-\dfrac{a^2+b^2+c^2}{2}=-\dfrac{1}{2}\)
\(P_{min}=-\dfrac{1}{2}\) khi \(a+b+c=0\)
không cần đk là a,b,c là số thực cũng được @@
Sử dụng bất đẳng thức phụ x2+y2≥2xyx2+y2≥2xy
chứng minh : x2+y2≥2xy<=>(x−y)2≥0x2+y2≥2xy<=>(x−y)2≥0*đúng*
Áp dụng vào bài toán ta được :
2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)
<=>LHS≥ab+bc+ca<=>LHS≥ab+bc+ca
Dấu = xảy ra <=>a=b=c
\(a^2+b^2\ge ab+bc+ca.\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(đpcm\right)\)