K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

tao mới chỉ hk lớp 6 thôi

24 tháng 4 2018

bạn có thể làm theo cách này:

nhân hai vế với 2 sau đó chuyển toàn bộ hạng tử của VP sang VT.

Lúc này bạn gộp lại sao cho có tổng các bình phương ,

24 tháng 4 2018

Ta có : \(a^2+b^2+1>ab+a+b\) \((\forall a,b\in R)\)

\(\Leftrightarrow2a^2+2b^2+2>2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)>0\left(\text{luôn đúng }\right)\)\(\Rightarrow\text{ đpcm}\)

9 tháng 5 2018

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\ge0\)

\(\Rightarrow\left(\dfrac{a^2}{4}-ab+b^2\right)+\left(\dfrac{a^2}{4}-ac+c^2\right)+\left(\dfrac{a^2}{4}-ad+d^2\right)+\left(\dfrac{a^2}{4}-ae+e^2\right)\)

\(\Rightarrow\left(\dfrac{a}{2}-b\right)^2+\left(\dfrac{a}{2}-c\right)^2+\left(\dfrac{a}{2}-d\right)^2+\left(\dfrac{a}{2}-e\right)^2\ge0\) (đúng)

Dấu "=" xảy ra khi: \(\dfrac{a}{2}=b=c=d=e\)

9 tháng 5 2018

\(a^2+b^2+c^2+d^2+e^2\ge a.\left(b+c+d+e\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) ( luôn đúng)

6 tháng 4 2015

cau 2

a^2 +b^2+c^2 +3>=2(a+b+c)

<=> a^2+b^2 +c^2 +3 -2a -2b -2c >=0

<=>(a-1)^2+(b-1)^2+(c-1)^2>=0    (luon đúng)

vậy a^2 +b^2 +c^2 +3 >=2(a+b+c)

6 tháng 4 2015

cau 1

a^2 +b^2 +1>= ab +a +b   (H)

<=> 2a^2 +2b^2 -2a -2b -2ab +2>=0   (nhân cả 2 vế với 2 đồng thời chuyển vế)

<=> (a^2 -2a +1) +(b^2-2b+1 )+(a^2 -2ab+b^2)>=0

<=> (a-1)^2+(b-1)^2 +(a-b)^2>=0    (luon dung)

=>H luôn đung

20 tháng 5 2018

1.              Giải 

Ta chứng minh với mọi x, y luôn có : \(\frac{x+y}{2}\cdot\frac{x^3+y^3}{2}\le\frac{x^4+y^4}{2}\) (1) 

\(\Rightarrow\left(1\right)\Leftrightarrow\left(x+y\right)\left(x^3+y^3\right)\le2\left(x^4+y^4\right)\)

\(\Leftrightarrow xy\left(x^2+y^2\right)\le x^4+y^4\)

\(\Leftrightarrow\left(x-y\right)^2\left[\left(\frac{x+y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\)

ÁP DỤNG (1) ta được 

\(\frac{a+b}{2}\cdot\frac{a^2+b^2}{2}\cdot\frac{a^3+b^3}{2}=\left[\frac{a+b}{2}\cdot\frac{a^3+b^3}{2}\right]\cdot\frac{a^2+b^2}{2}\)

\(\Leftrightarrow\left[\frac{a+b}{2}\cdot\frac{a^3+b^3}{2}\right]\cdot\frac{a^2+b^2}{2}\le\frac{a^4+b^4}{2}\cdot\frac{a^2+b^2}{2}\le\frac{a^6+b^6}{2}\left(đpcm\right)\)

2.  Ta biến đổi các Đẳng thức : \(a^2+b^2+c^2-\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow\left(\frac{a^2}{2}-ab+\frac{b^2}{2}\right)+\left(\frac{b^2}{2}-bc+\frac{c^2}{2}\right)-\left(\frac{c^2}{2}-ca+\frac{a^2}{2}\right)\ge0\)

\(\Leftrightarrow\left(\frac{a}{\sqrt{2}}-\frac{b}{\sqrt{2}}\right)^2+\left(\frac{b}{\sqrt{2}}-\frac{c}{\sqrt{2}}\right)+\left(\frac{c}{\sqrt{2}}-\frac{a}{\sqrt{2}}\right)\ge0\left(đpcm\right)\)

27 tháng 1 2022

không cần đk là a,b,c là số thực cũng được @@

Sử dụng bất đẳng thức phụ x2+y2≥2xyx2+y2≥2xy

chứng minh : x2+y2≥2xy<=>(x−y)2≥0x2+y2≥2xy<=>(x−y)2≥0*đúng*

Áp dụng vào bài toán ta được :

2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)2.LHS≥ab+bc+ca+ab+bc+ca=2(ab+bc+ca)

<=>LHS≥ab+bc+ca<=>LHS≥ab+bc+ca

Dấu = xảy ra <=>a=b=c

27 tháng 1 2022

\(a^2+b^2\ge ab+bc+ca.\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(đpcm\right)\)