Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gợi ý: phân tích 50 n + 2 - 50 n + 1 = 245.10. 50 n .
b) Gợi ý: phân tích n 3 - n = n(n - 1)(n +1).
A = n3 – n (có nhân tử chung n)
= n(n2 – 1) (Xuất hiện HĐT (3))
= n(n – 1)(n + 1)
n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên
+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2
+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3
Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.
Ta có n3 - n=n( n2-1)=(n-1)n(n+1)
Mà tích ba số tự nhiên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6
A = n3 – n (có nhân tử chung n)
= n(n2 – 1) (Xuất hiện HĐT (3))
= n(n – 1)(n + 1)
n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên
+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2
+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3
Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.
-Chanh-
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
Thực hiện phép chia, ta được:Thương của A chia cho B là n3 – 6n2 + 11n – 6Ta có: 3 2 3 226 11 6 12 6 6( 1) .( 1) 6.(2 1)n n n n n n nn n n n n− + − = − + − −= − + + − −Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên tích đó vừa chia hết cho 2, vừa chia hết cho 3 suy ra tích đó chia hết cho 6Mặt khác 6(2n-n2-1) chia hết cho 6=> Th¬ng cña phÐp chia A cho B lµ béi sè cña 6
Xem nội dung đầy đủ tại:https://123doc.org//document/4209455-de-da-hsg-toan-8-huyen-tam-duong-2016-2017.htm
Do n nguyên và n > 1 nên \(n\ge2\)
Với n = 2 \(n^3-13n=-18⋮6\)
Giả sử đúng với n = k (k>1) tức là \(k^3-13k⋮6\)
Ta chứng minh điều có đúng với n = k + 1
Thật vậy: \(\left(k+1\right)^3-13\left(k+1\right)=k^3+3k^2+3k+1-13k-13\)
\(=\left(k^3-13k\right)+\left(3k^2+3k-12\right)\)
Ta chỉ cần chứng minh: \(3k^2+3k-12⋮6\)
\(\Leftrightarrow3\left(k^2+k\right)⋮6\Leftrightarrow k^2+k⋮2\)
Tới đây xét tính chẵn lẻ nữa là xong=)
n3 -13n = n3 - n - 12n = n(n2-1) - 12n = (n-1)n(n+1) - 12n
Ta có: (n-1)n(n+1) là 3 số nguyên liên tiếp nên chia hết cho 6 và 12n chia hết cho 6 => n3 -13n \(⋮\)6
n3-19n=n3-n-18n=(n2-1)n-18n=(n-1)n(n+1)-18n
trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3
=>(n-1)n(n+1) chia hết cho 3
trong 3 số tự nhiên liên tiếp sẽ có ít nhất 1 số chia hết cho 2
=>(n-1)n(n+1) chia hết cho 2
vì (2;3)=1=>(n-1)n(n+1) chia hết cho 6
=>(n-1)n(n+1)=6k
=>(n-1)n(n+1)-18n=6k-18n=6(k-3n) chia hết cho 6
=>n3-19n chia hết cho 6
=>đpcm
A = n³-19n = n³-n - 18n = n(n²-1) - 18n = n(n-1)(n+1) - 18n
n(n-1)(n+1) là 3 số nguyên liên tiếp nên chia hết cho 3, ngoài ra ít nhất 1 số chẳn nên chia hết cho 2 => n(n-1)(n+1) chia hết cho 6, 18n chia hết cho 6
=> A chia hết cho 6