K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2020

Với \(n=1\)thì \(7^3+8^3=343+512=855=57.15\)chia hết cho 57

Giả sử \(7^{k+2}+8^{k+2}\)chia hết cho 57

Xét \(7^{k+3}+8^{2k+3}=7^{k+2}.7+8^{2k+1}.8^2\)

\(=7\left(7^{k+2}+8^{2k+1}\right)+57.8^{2k+1}\)chia hết cho 57

Mệnh đề đúng với n=1 vì số 111 chia hết cho 3

Bài này áp dụng các quy tắc của MODUL các cách giải khác sẽ khá phức tạp nên nếu bạn chưa học về MODUL thì bạn cũng nên tự nghiên cứu nha :)) Giờ giải thoi :))

\(7^{n+2}+8^{2n+1}=7^2.7^n+8.8^{2n}=49.7^n+8\left(8^2\right)^n=49.7^n+8.64^n\)

Vì \(64\equiv7\left(mod57\right)\)nên \(64^n\equiv7^n\left(mod57\right)\)

\(\Rightarrow49.7^n+64^n\equiv49.7^n+8.7^n\left(mod57\right)\)

Mà \(49.7^n+8.7^n=57.7^n\equiv0\left(mod57\right)\) hay \(57.7^n⋮57\)

\(\Rightarrow7^{n+2}+8^{2n+1}⋮57\)

25 tháng 2 2016

ai giúp mk vs

29 tháng 10 2015

mỗi câu mà đăng hoài zậy @@