Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(+) với n là số lẻ => n = 2k
Thay vào ta có
n(n+3) = 2k (2k + 3) chia hết cho 2 với mọi n
(+) n là số lẻ => n = 2k + 1
thay vào ta có :
n(n+3) = (2k+ 1 )(2k+ 1 + 3 ) = ( 2k+ 1)( 2k + 4 ) = 2 ( k + 2 )( 2k + 1 ) luôn chia hết cho 2 với mọi n
VẬy n(n+3) luôn luôn chia hết cho 2
Ta có: n(n+3)=n(n+1+2)
=n(n+1)+2n
Ta thấy n(n+1) là 2 số tự nhiên liên tiếp nên luôn tồn tại một số chẵn chia hết cho 2=>n(n+1) chia hết cho 2
mà 2n cũng chia hết cho 2
=> n(n+3) chia hết cho 2 với mọi n tự nhiên
Giả sử \(\left(5^n-1\right)⋮4\)
Suy ra \(5^n⋮5\)(phù hợp)
Vậy \(\left(5^n-1\right)⋮4\)
Cách 2
Ta có:
\(5\equiv1\)(mod 4)
Suy ra \(5^n\equiv1\)(mod 4)
Suy ra \(5^n-1\equiv1-1\equiv0\)(mod 4)
Vậy \(\left(5^n-1\right)⋮4\)