K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

\(A=\left(n-1\right)\left(n+1\right)\left(n^2\right)\left(n^2+1\right)\)

\(A=\left(n-1\right)n\left(n+1\right).n\left(n^2+1\right)\left(I\right)\)

\(A=\left[\left(n-1\right)\left(n+1\right).n^2\right]\left(n^2-4+5\right)\)

\(=\left(n-1\right)\left(n+1\right).n^2\left(n^2-2^2\right)+5\left(n-1\right)\left(n+1\right).n^2\)

\(=\left(n-1\right)\left(n+1\right).n^2\left(n-2\right)\left(n+2\right)+5\left(n-1\right)\left(n+1\right).n^2\)

\(=\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right).n^2+5\left(n-1\right)\left(n+1\right).n^2\left(II\right)\)

1)với (I) A là tích của 3 số tự nhiên liên tiếp => chia hết cho 2 &3

2) với bửu thức (II) A là tổng hai số hạng

số hạng đầu là tích của 5 số tự nhiên liên tiếp=> chia hết cho 5

số hạng sau hiển nhiên chia hết cho 5 do có thừa số 5

KL

Với (I) A chia hết cho 2&3

Với (II) A chia hết cho 5

(I)&(II)=> điều bạn muốn tìm

11 tháng 3 2020

Ta có : 

(n,6) = 1 => n phải là số lẻ ( nếu n chẵn thì ( n,6) = 2 )

=> n - 1 và n + 1 là 2 số chẵn liên tiếp 

=> ( n - 1 )(n + 1 ) chia hết cho 8 

(n,6) = 1 => n không chia hết cho 3

=> n sẽ có dạng là 3k +1 ; 3k + 2 ( k thuộc Z )

Với n = 3k +1 => n -1 = 3k + 1 -1 = 3k chia hết cho 3  => (n - 1)(n+1) chia hết cho 3 

Với n = 3k + 2 => n + 1 = 3k + 2 +1 = 3k+ 3 chia hết cho 3 => ( n -1 )(n +1) chia hết cho 3 

Với cả 2TH => ( n-1)(n+1) chia hết cho 3 

Mà (8,3)= 1 => (n-1)(n+1) chia hết cho 24 ( đpcm)

11 tháng 3 2020

ta có \(\left(n-1\right).n.\left(n+1\right)⋮3\) mà UCLN (3,n) = 1

nên \(\left(n-1\right).\left(n+1\right)⋮3\) (1)

n là số nguyên tố lớn hơn 3 nên n là số lẻ, p - 1 và p + 1 là hai số chẵn liên tiếp

Trong số hai số chẵn liên tiếp , có một số là bội của 4 nên tích chúng chia hết cho 8  (2)

Từ (1) và (2) suy ra \(\left(n-1\right).\left(n+1\right)⋮3và8\)

Mà UCLN (3,8) = 1

nên \(\left(n-1\right).\left(n+1\right)⋮24\)

22 tháng 1 2018

a) Ta xét các trường hợp:

+)  Với n = 3k  \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)

Ta thấy (3k - 1)(3k + 2) không chia hết cho 3, 12 chia hết cho 3 nên (3k - 1)(3k + 2) + 12 không chia hết cho 3 hay (3k - 1)(3k + 2) + 12 không chia hết cho 9.

+)  Với n = 3k + 1 \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=3k\left(3k+3\right)+12=9k\left(k+1\right)+12\)

Ta thấy \(9k\left(k+1\right)⋮9;12⋮̸9\Rightarrow9k\left(k+1\right)+12⋮̸9\)

+) Với n = 3k + 2 \(\left(k\in Z\right)\), ta có: \(\left(n-1\right)\left(n+2\right)+12=\left(3k+1\right)\left(3k+4\right)+12\)

Ta thấy (3k + 1)(3k + 4) không chia hết cho 3, 12 chia hết cho 3 nên (3k + 1)(3k + 4) + 12 không chia hết cho 3 hay (3k + 1)(3k + 4) + 12 không chia hết cho 9.

b) Tương tự bài trên.

11 tháng 1 2016

Ta có :

\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}.\frac{2.4.6...2n}{2.4.6...2n}=\frac{1.2.3...\left(2n-1\right).2n}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n.\left(2.4.6...2n\right)}=\frac{1.2.3...\left(2n-1\right).2n}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n.2^n.\left(1.2.3...n\right)}=\frac{1}{2^n}\)

10 tháng 1 2016

đây là toán chứng minh,ko phải tìm n

13 tháng 6 2020

A = 1.2.3 + 2.3.4 + 3.4.5 ... + n(n + 1)(n + 2)

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + n(n + 1)(n + 2).4

4A = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2)+ ... + n(n + 1)(n + 2)[(n + 3) - (n - 1)]

4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + n(n + 1)(n + 2)(n + 3) - (n-1)n(n+1)(n+2)

4A = n(n+1)(n+2)(n+3)

A = n(n + 1)(n+2)(n + 3) : 4

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)

\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)

\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)

Ta có đpcm.

21 tháng 11 2016

Đặt \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)

\(=\left(n^2+3n\right)\left(n^2+2n+n+2\right)+1\)

Đặt \(n^2+3=t\)

=> \(A=t\left(t+2\right)+1\)

\(=t^2+2t+1\)

\(=\left(t+1\right)^2\)

=> A là số chính phương

Vậy với mọi số tự nhiên n thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương ( đpcm )
 

 

15 tháng 6 2017

2/ Ta có : 4x - 3 \(⋮\) x - 2

<=> 4x - 8 + 5  \(⋮\) x - 2

<=> 4(x - 2) + 5  \(⋮\) x - 2

<=> 5 \(⋮\)x - 2 

=> x - 2 thuộc Ư(5) = {-5;-1;1;5}

Ta có bảng : 

x - 2-5-115
x-3137