Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi d=ƯCLN(16n+5;6n+2)
=>16n+5 và 6n+2 chia hết cho d
=>48n+15-48n-16 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+3;4n+8)
=>4n+8-4n-6 chia hết cho d
=>2 chia hết cho d
mà 2n+3 lẻ
nên d=1
=>ĐPCM
a, \(\frac{3n-2}{4n-3}\)
Gọi ƯCLN ( 3n - 2 ; 4n - 3 ) là d .
\(\Rightarrow\) 3n - 2 ⋮ d
4n - 3 ⋮ d
\(\Rightarrow\) 4n - 3 + 3n - 2 ⋮ d
\(\Rightarrow\)( 12n - 9 )+ ( 12n - 8 ) ⋮ d
\(\Rightarrow\) ( 12n - 12n ) + ( 9 - 8 ) ⋮ d
\(\Rightarrow\) 1 ⋮ d
\(\Rightarrow\) d = 1 .
\(\Rightarrow\) 4n - 3 và 3n - 2 là hai số nguyên tố cùng nhau .
Vậy \(\frac{3n-2}{4n-3}\) là phân số tối giản .
b, \(\frac{4n+1}{6n+1}\)
Gọi ƯCLN ( 4n + 1 ; 6n + 1 ) là d .
\(\Rightarrow\) 4n + 1 ⋮ d
6n + 1 ⋮ d
\(\Rightarrow\) 4n + 1 - 6n + 1 ⋮ d
\(\Rightarrow\) ( 12n + 3 ) - ( 12n + 2 ) ⋮ d.
.\(\Rightarrow\) ( 12n - 12n ) + ( 3 - 2 ) ⋮ d
\(\Rightarrow\) 1 ⋮ d
\(\Rightarrow\) d = 1
\(\Rightarrow\) 4n + 1 và 6n + 1 là hai số nguyên tố cùng nhau .
Vậy \(\frac{4n+1}{6n+1}\) là phân số tối giản .
:)
Chúc bạn học tốt !
a) Để phân số \(\frac{3n-2}{4n-3}\)là phân số tối giản
=> ƯCLN ( 3n - 2 ; 4n - 3 ) = 1
Gọi ƯCLN ( 3n - 2 ; 4n - 3 ) = d
=> 3n - 2 \(⋮\)d và 4n - 3 \(⋮\)d ( 1 )
Từ ( 1 )
=> 4 . ( 3n - 2 ) \(⋮\)d và 3 . ( 4n - 3 ) \(⋮\)d
=> 12n - 8 \(⋮\)d và 12n - 9 \(⋮\)d ( 2 )
Từ ( 2 )
=> ( 12n - 9 ) - ( 12n - 8 ) \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư ( 1 )
=> d = 1
=> Phân số \(\frac{3n-2}{4n-3}\)là phân số tối giản với mọi n \(\in\)\(ℕ^∗\)
Bạn chọn vào câu tương tự của bạn trên OLM sẽ có bài tham khảo nha
=))) Mong bạn hiểu
Mik chưa bt làm nên cho bn coi bài của ngta =))
a) Gọi (3n-2,4n-3) = d
=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\)=>\(\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
=>\(\left(12n-8\right)-\left(12n-9\right)⋮d\)
=>\(1⋮d\)
=>\(d=1\)=>\(\frac{3n-2}{4n-3}\)là phân số tối giản
b) Gọi (4n+1,6n+1) = d
=>\(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\)=>\(\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}\)
=> \(\left(12n+3\right)-\left(12n+2\right)⋮d\)
=> \(1⋮d\)
=> \(d=1\)
=> \(\frac{4n+1}{6n+1}\)là phân số tối giản
1) Vì ƯCLN ( n + 5 ; n + 6 ) = 1
2) Gọi ƯCLN ( 3n + 5 ; 4n + 7 ) là d
=> ( 3n + 5 ) \(⋮\)d
( 4n + 7 ) \(⋮\)d
=> 4(3n + 5 ) \(⋮\)d
3 ( 4n + 7 ) \(⋮\)d
=> 12n + 20 \(⋮\)d
12n + 21 \(⋮\)d
=> d = 1
=>3n+5/4n+7 là phân số tối giản
câu 3 làm tương tự câu 2
#๖ۣۜβσʂʂ彡
Bổ sung câu 1 của Thiên Ân :
Để \(\frac{n+5}{n+6}\)là phân số tối giản
=> ƯCLN ( n + 5 ; n + 6 ) = 1
Gọi ƯCLN ( n + 5 ; n + 6 ) = d
=> n + 5 \(⋮\)d và n + 6 \(⋮\)d ( 1 )
Từ 1
=> ( n + 6 ) - ( n + 5 ) \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư ( 1 )
=> d = 1
=> \(\frac{n+5}{n+6}\)là phân số tối giản => đpcm
a) \(\frac{n+3}{n+4}\)vì \(\frac{3}{4}\)là phân số tối giản nên bất kì số n nào cộng với \(\frac{3}{4}\)đều là p/s tối giản
b) \(\frac{3n+3}{9n+8}\)= \(\frac{3}{9}+\frac{3}{8}=\frac{51}{72}\)vì \(\frac{51}{72}\)là p/s tối giản nên phép tính là p/s tối giản
c) Làm tương tự như b
a) \(\frac{3n-2}{4n-3}\)
gọi \(\text{Ư}CLN_{\left(3n-2;4n-3\right)}=d\)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}}\)
\(\Rightarrow12n-8-12n+9⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
vậy phân số \(\frac{3n-2}{4n-3}\) là phân số tối giản
b) \(\frac{4n+1}{6n+1}\)
gọi \(\text{Ư}CLN_{\left(4n+1;6n+1\right)}=d\)
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}}\)
\(\Rightarrow12n+3-12n-2⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
vậy phân số \(\frac{4n+1}{6n+1}\) là phân số tối giản
hay nhỉ, tự hỏi tự trả lời