Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. *nếu x>=1.Ta có:A=x5(x3-1)+x(x-1)>0
*nếu x<1. ta có: A=x8 +x2 (1-x3)+ (1-x)>0 (từng số hạng >o)
ai là bạn cũ của NICK "Kiệt" thì kết bạn với tui ! nhất là những người có choi Minecraft !
a) n(n + 5) - (n - 3)(n + 2) = n2 + 5n - n2 - 2n + 3n + 6 = 6n + 6 = 6(n + 1) \(⋮\)6 \(\forall\)x \(\in\)Z
b) (n2 + 3n - 1)(n + 2) - n3 + 2 = n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2 = 5n2 + 5n = 5n(n + 1) \(⋮\)5 \(\forall\)x \(\in\)Z
c) (6n + 1)(n + 5) - (3n + 5)(2n - 1) = 6n2 + 30n + n + 5 - 6n2 + 3n - 10n + 5 = 24n + 10 = 2(12n + 5) \(⋮\)2 \(\forall\)x \(\in\)Z
d) (2n - 1)(2n + 1) - (4n - 3)(n - 2) - 4 = 4n2 - 1 - 4n2 + 8n + 3n - 6 - 4 = 11n - 11 = 11(n - 1) \(⋮\)11 \(\forall\)x \(\in\)Z
Ta có : A = n2(n2 +2n + 1) + ( n2 + 2n + 1) = (n2+1).(n+1)2
Vì n2 + 1 không phải là số chính phương nên A không phải là số chính phương.
Lời giải:
Ta có: \(4+(2n-1)^4=[(2n-1)^2+2]^2-[2(2n-1)]^2\)
\(=[(2n-1)^2+2-2(2n-1)][(2n-1)^2+2+2(2n-1)]\)
\(\Rightarrow \frac{2n-1}{4+(2n-1)^4}=\frac{2n-1}{[(2n-1)^2+2-2(2n-1)][(2n-1)^2+2+2(2n-1)]}\)
\(=\frac{1}{4}\left(\frac{1}{(2n-1)^2+2-2(2n-1)}-\frac{1}{(2n-1)^2+2+2(2n-1)}\right)\)
Do đó:
\(\frac{1}{4+1^4}=\frac{1}{4}(1-\frac{1}{5})\)
\(\frac{3}{4+3^4}=\frac{1}{4}(\frac{1}{5}-\frac{1}{17})\)
\(\frac{5}{4+5^4}=\frac{1}{4}(\frac{1}{17}-\frac{1}{37})\)
......
Do đó:
\(\frac{1}{4+1^4}+\frac{3}{4+3^4}+...+\frac{2n-1}{4+(2n-1)^4}=\frac{1}{4}(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{17}+...+\frac{1}{(2n-1)^2+2-2(2n-1)}-\frac{1}{(2n-1)^2+2+2(2n-1)})\)
\(=\frac{1}{4}(1-\frac{1}{(2n-1)^2+2+2(2n-1)})=\frac{1}{4}(1-\frac{1}{(2n-1+1)^2+1})\)
\(=\frac{1}{4}(1-\frac{1}{4n^2+1})=\frac{n^2}{4n^2+1}\)
Ta có đpcm.
n=1 ; \(\dfrac{1}{4+1^4}=\dfrac{1}{5}=\dfrac{1^2}{4.^2+1}=\dfrac{1}{5};dung\)
giả sử n =k đúng \(\Leftrightarrow S=\dfrac{1}{4+1^4}+...+\dfrac{2k-1}{4+\left(2k-1\right)^4}=\dfrac{k^2}{4k^2+1}\) (*)
cần c/m đúng n =k+1 ;
c/m
với n=k+1
\(S=\left(\dfrac{1}{4+1^4}+...+\dfrac{2k-1}{4+\left(2k-1\right)^4}\right)+\dfrac{2\left(k+1\right)-1}{4+\left(2\left(k+1\right)-1\right)^4}\)
từ (*) =>\(S=\dfrac{k^2}{4k^2+1}+\dfrac{2\left(k+1\right)-1}{4+\left(2\left(k+1\right)-1\right)^4}\)
\(k+1=t\Leftrightarrow k=t-1\)
\(S=\dfrac{t^2-2t+1}{4\left(t^2-2t+1\right)+1}+\dfrac{2t-1}{4+\left(2t-1\right)^4}\)
\(S=\dfrac{t^2-2t+2}{4t^2-8t+5}+\dfrac{2t-1}{\left(4t^2+1\right)\left(4t^2-8t+5\right)}=\dfrac{\left(t^2-2t+1\right)\left(4t^2+1\right)+2t-1}{\left(4t^2+1\right)\left(4t^2-8t+5\right)}\)\(S=\dfrac{t^2\left(4t^2-8t+5\right)}{\left(4t^2+1\right)\left(4t^2-8t+5\right)}=\dfrac{t^2}{\left(4t^2+1\right)}=\dfrac{\left(k+1\right)^2}{4\left(k+1\right)^2+1}\)
Vậy tổng trên đúng với k +1
theo Quy nạp ta có dpcm
a) Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}\)
\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)
Ta có:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}\)
\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}+1\)
\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\)
\(\Rightarrow\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)< \dfrac{1}{2^2}\left(2-\dfrac{1}{2}\right)\)
\(\Rightarrow A< \dfrac{1}{2^2}.2-\dfrac{1}{2^2}.\dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{2^3}< \dfrac{1}{2}\)
Vậy \(A< \dfrac{1}{2}\left(Đpcm\right)\)
b) Đặt \(B=\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{\left(2n+1\right)^2}\)
Ta có:
\(B< \dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(B< \dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(B< \dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(B< \dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)
\(B< \dfrac{1}{2}\left(\dfrac{2n+1}{2n+1}-\dfrac{1}{2n+1}\right)\)
\(B< \dfrac{1}{2}.\dfrac{2n}{2n+1}\)
\(B< \dfrac{2n}{4n+2}\)
\(B< \dfrac{2n}{2\left(2n+1\right)}\)
\(B< \dfrac{n}{2n+1}\)