K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2015

thiếu đề bài hả bạn, có phải là chia hết cho 10 ko

18 tháng 12 2015

du nhung ma mjnh ban ôk

26 tháng 12 2015

Ta có:

3^n+2-2^n+2+3^n-2^n

=3^n+2+3^n-(2^n+2+2^n)

=3^n(3^2 +1)-2^n(2^2 +1)

=3^n.10-2^n.5=3^n.10-2^(n-1).10

=(3^n-2^(n-1)).10 chia het cho 10

Tick nhé

24 tháng 2 2016

3^n+2-2^n+2+3^n-2^n

=3^n+2+3^n-(2^n+2+2^n)

=3^n(3^2+1)-2^n(2^2+1)

=3^n.10-2^n.5=3^n.10-2^n-1.10=10(3^n-2^n-1) chia hết cho 10(đpcm)

26 tháng 1 2018

Ta có : 3^n+2 - 2^n+4 + 3^n + 2^n

= (3^n+2 + 3^n) - (2^n+4-2^n)

= 3^n-1.(3^3+3) - 2^n-1.(2^5-2) ( vì n nguyên dương nên n-1 >= 0 )

= 3^n-1.30 - 2^n-1.30

= 30.(3^n-1+2^n-1) chia hết cho 30

=> ĐPCM

Tk mk nha

22 tháng 11 2015

\(3^{n+2}-2 ^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(2^n-2^{n-1}\right).10\)   chia hết cho 10

18 tháng 9 2019

\(B=\left(1-\frac{3}{2.4}\right)\left(1-\frac{3}{3.5}\right)\left(1-\frac{3}{4.6}\right)...\left(1-\frac{3}{n\left(n+2\right)}\right)\)

\(=\frac{1.5}{2.4}.\frac{2.6}{3.5}.\frac{3.7}{4.6}...\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)

\(=\frac{\left[1.2.3...\left(n-1\right)\right]\left[5.6.7...\left(n+3\right)\right]}{\left(2.3.4...n\right)\left[4.5.6...\left(n+2\right)\right]}\)

\(=\frac{n+3}{4n}< 2\left(đpcm\right)\)

25 tháng 2 2017

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n\left(9+1\right)-2^{n-1}.2.\left(4+1\right)\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\) (đpcm)

25 tháng 2 2017

Đặt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n] 
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10) 
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5) 
Suy ra S chia hết cho 10.

8 tháng 5 2016

Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n] 

Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10) 

Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5) 

Suy ra S chia hết cho 10.

8 tháng 5 2016

\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-2^{n+2}-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(3^n-2^{n-1}\right).10\)

luôn chia hết cho 10  (đpcm)

4 tháng 3 2020

Ta có:

4n+3 +4n+2 -4n+1 -4n 

=4n-1 .44 + 4n-1 . 43 - 4n-1 . 42 - 4n-1 .4 

=4n-1 . (44  +4- 42 -4) 

=4n-1 . 300 : 300 

= 4n+3  + 4n+2 -4n+1  -4n \(⋮\) 300 (ĐPCM)

4 tháng 3 2020

Đặt A=4^{n+3}+4^{n+2}-4^{n+1}-4^n

A= 4^n-1(4^4+4^3-4^2-4)

A=4^n-1.300⋮300

                  k cho mik nha                học tốt.