K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

à thôi mn khỏi phải giải, mk làm đc r

12 tháng 2 2017

cậu chỉ ra mk xem cách giải cái  bài này nghĩ ma k ra  ak?

15 tháng 4 2016

Gọi tổng trên là A

A = 1/2.2 + 1/3.3 +......+ 1/n.n

A < 1/1.2 + 1/2.3 +.......+ 1/(n-1)n

A < 1 - 1/2 + 1/2 - 1/3 +..........+ 1/n-1 - 1/n

A < 1 - 1/n < 1

=> A < 1 (đpcm)

Cái này không phải toán lớp 9 đâu bn ạ,lớp 6 có rồi !!!

15 tháng 4 2016

ai bảo bạn là toán 6! 

27 tháng 10 2017

1/

n=2 ta thấy đúng

GS đúng với n=k tức là (1-x)k+(1+x)k<2k

Ta cm đúng với n=k+1

(1-x)k+1+(1+x)k+1< (1-x)k+(1+x)k+(1-x)(1+x)k+(1-x)k(1+x)= 2\(\left(\left(1-x\right)^k+\left(1+x\right)^k\right)\)\(< 2.2^k=2^{k+1}\)

=> giả sử là đúng

theo nguyên lí quy nạp ta có đpcm

27 tháng 10 2017

câu 2 đi thánh <(") câu 1 t làm ra rồi 

28 tháng 8 2016

Ta có S m-n = (√2 + 1)/(√2 + 1)+ (√2 - 1)m /(√2 - 1)n = (√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)n

Từ đó 

S m+n + S m-n = (√2 + 1)m+n + (√2 - 1)m+n +(√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)

= (√2 + 1)m [(√2 + 1)+ (√2 -1)n] + (√2 - 1)m [(√2 - 1)n + (√2 + 1)n]

= [(√2 + 1)n + (√2 - 1)n] [(√2 + 1)m + (√2 - 1)m]

= S​ .S n

28 tháng 8 2016

sorry mk ko bít!!! ^^

6476575756876982525435465658768768676968256346564576576576

21 tháng 8 2019

Dễ thấy với \(x=2\) ta có VT > VP.

Bạn xem lại đề.

21 tháng 8 2019

ez

\(3\left(x^2-\frac{1}{x^2}\right)< 2\left(x^3-\frac{1}{x^3}\right)\)

\(\Leftrightarrow3\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)-2\left(x-\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}+1\right)< 0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)\left[3\left(x+\frac{1}{x}\right)-2\left(x^2+\frac{1}{x^2}+1\right)\right]< 0\)

Do \(x>1\Leftrightarrow x^2>1\Leftrightarrow x^2-1>0\)

\(\Rightarrow x-\frac{1}{x}=\frac{x^2-1}{x}>0\forall x>1\)

\(pt\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left(x^2+\frac{1}{x^2}+1\right)< 0\)

\(\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left(x^2+2+\frac{1}{x^2}-1\right)< 0\)

\(\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left[\left(x+\frac{1}{x}\right)^2-1\right]< 0\)

\(\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left(x+\frac{1}{x}\right)^2+2< 0\)

Đặt \(x+\frac{1}{x}=a\)( \(a>2\) )

\(pt\Leftrightarrow3a-2a^2+2< 0\)

\(\Leftrightarrow2a^2-3a-2>0\)

\(\Leftrightarrow2\left(a^2-\frac{3}{2}a-1\right)>0\)

\(\Leftrightarrow2\left(a^2-2\cdot a\cdot\frac{3}{4}+\frac{9}{16}-\frac{25}{16}\right)>0\)

\(\Leftrightarrow2\left[\left(a-\frac{3}{4}\right)^2-\frac{25}{16}\right]\)

\(\Leftrightarrow2\left(a-\frac{3}{4}\right)^2-\frac{25}{8}>0\)

\(\Leftrightarrow2\left(a-\frac{3}{4}\right)^2>\frac{25}{8}\)

Ta có \(a>2\Leftrightarrow2\left(a-\frac{3}{4}\right)^2>2\left(2-\frac{3}{4}\right)^2=\frac{25}{8}\)( luôn đúng )

Vậy ta có đpcm.

21 tháng 8 2019

sai đề

21 tháng 8 2019

Đúng bạn nhé