Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Ax=Bx\Rightarrow Ax-Bx=0\Rightarrow x\left(A-B\right)=0\Rightarrow x=0\) \(\rightarrow câu.A\)
A.(0)
B.(1)
C(0,1,5)
D.(0,1,5,6)
chọn đáp án thôi là đc ak
(n − 1)(3 − 2n) − n(n + 5)
= 3n − 2 n 2 – 3 + 2n − n 2 − 5n
= −3 n 2 – 3 = −3( n 2 + 1)
Vì -3 ⋮ 3 nên -3(n2+1) ⋮ 3
Vậy biểu thức chia hết cho 3 với mọi giá trị của n.
n3-19n=n3-n-18n=(n2-1)n-18n=(n-1)n(n+1)-18n
trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3
=>(n-1)n(n+1) chia hết cho 3
trong 3 số tự nhiên liên tiếp sẽ có ít nhất 1 số chia hết cho 2
=>(n-1)n(n+1) chia hết cho 2
vì (2;3)=1=>(n-1)n(n+1) chia hết cho 6
=>(n-1)n(n+1)=6k
=>(n-1)n(n+1)-18n=6k-18n=6(k-3n) chia hết cho 6
=>n3-19n chia hết cho 6
=>đpcm
A = n³-19n = n³-n - 18n = n(n²-1) - 18n = n(n-1)(n+1) - 18n
n(n-1)(n+1) là 3 số nguyên liên tiếp nên chia hết cho 3, ngoài ra ít nhất 1 số chẳn nên chia hết cho 2 => n(n-1)(n+1) chia hết cho 6, 18n chia hết cho 6
=> A chia hết cho 6
Lời giải:
* CM $A$ chia hết cho $2$
Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.
Do đó luôn tồn tại 1 trong 2 số là chẵn
$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$
* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:
Nếu $n=3k(k\in\mathbb{Z}$
$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Vậy tóm lại $A\vdots 3(**)$
Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)
Lời giải:
* CM $A$ chia hết cho $2$
Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.
Do đó luôn tồn tại 1 trong 2 số là chẵn
$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$
* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:
Nếu $n=3k(k\in\mathbb{Z}$
$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Vậy tóm lại $A\vdots 3(**)$
Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)
\(6^{2n}=36^n;36\equiv2\left(mod17\right)\Rightarrow6^{2n}\equiv2^n\left(mod17\right)\)
\(19\equiv2\left(mod17\right)\Rightarrow19^n\equiv2^n\left(mod17\right)\)
\(2^{n+1}\equiv2^{n+1}\left(mod17\right)\)
\(\Rightarrow6^{2n}+19^n-2^{n+1}\equiv2^n+2^n-2^{n+1}\equiv2^{n+1}-2^{n+1}\equiv0\left(mod17\right)\)
\(\Rightarrow6^{2n}+19^n-2^{n+1}⋮17\forall n\in N\)
mé, ghê vãi