Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự cm bđt phụ: \(\frac{\left(m+n\right)^2}{x+y}\le\frac{m^2}{x}+\frac{n^2}{y}\) Với x;y>0
Áp dụng ta có \(\frac{\left(b+c\right)^2}{b^2+c^2+a\left(b+c\right)}\le\frac{b^2}{b^2+ab}+\frac{c^2}{c^2+ab}=\frac{b}{a+b}+\frac{c}{a+c}\)
Tương tự có đpcm
Bài 1:
a) Áp dụng BĐT Cô-si:
\(VT=a-1+\frac{1}{a-1}+1\ge2\sqrt{\frac{a-1}{a-1}}+1=2+1=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\).
b) BĐT \(\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\)
\(\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\)
\(\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) ( LĐ )
Dấu "=" xảy ra \(\Leftrightarrow a=0\).
Bài 2: tương tự 1b.
Bài 3:
Do \(a,b,c\) dương nên ta có các BĐT:
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự: \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng theo vế 3 BĐT:
\(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)( đpcm )
Ta có \(\frac{1a^2}{b}+b\ge2a\)
\(\frac{1b^2}{c}+c\ge2b\)
\(\frac{1c^2}{a}+a\ge2c\)
Cộng vế theo vế ta được
\(\frac{1a^2}{b}+\frac{b^2}{C}+\frac{c^2}{a}\)+ a + b + c \(\ge\)2(a + b + c)
<=> \(\frac{1a^2}{b}+\frac{b^2}{C}+\frac{c^2}{a}\)\(\ge\)a + b + c
a/ Biến đổi tương đương:
\(\Leftrightarrow3a^2-3ab+3b^2\ge a^2+ab+b^2\)
\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow2\left(a-b\right)^2\ge0\) (luôn đúng)
b/ \(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\frac{a+b}{3}=\frac{2a}{3}-\frac{b}{3}\)
Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)
Cộng vế với vế ta có đpcm
(a^2+2)(b^2+2)(c^2+2)
\(=\left(a^2b^2+2a^2+2b^2+4\right)\left(c^2+2\right).\)
\(=a^2b^2c^2+2a^2b^2+2a^2c^2+2b^2c^2+4a^2+4b^2+4c^2\)
\(=a^2b^2c^2+2a^2b^2+2a^2c^2+2b^2c^2+4=a^2b^2c^2+a^2+b^2+c^2-2ab-2bc-2ca+3\left(a^2+b^2+c^2\right)\)