K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

\(a^2+5b^2-4ab+2a-6b+3\)

\(=\left(a^2-4ab+4b^2\right)+\left(2a-4b\right)+1+\left(b^2-2b+1\right)+1\)

\(=\left(a-2b\right)^2+2\left(a-2b\right)+1+\left(b^2-2b+1\right)+1\)

\(=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1\forall a;b\)

Mà \(1>0\) nên \(a^2+5b^2-4ab+2a-6b+3>0\forall a;b\)(đpcm)

1 tháng 3 2022

gfvfvfvfvfvfvfv555

11 tháng 4 2016
giup mik vs. Cau nao cux dk
21 tháng 7 2016

Đây là bất đăngt thức Bunyakovsky.

Chứng minh:

(a2+b2) (x2+y2)>=(ax+by)2

\(\Leftrightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)-\left(ax+by\right)^2\ge0\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-2axby-b^2y^2\ge0\)

\(\Leftrightarrow a^2y^2-2aybx+b^2x^2\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)

BĐT này luôn đúng, ta có điều phải chứng minh

24 tháng 11 2017

 x^2 + y^2 +2xy = (x+y)^2 >=0 với mọi x,y

suy ra x^2 + y^2 + 2xy + 4 >0 với mọi x,y 

11 tháng 8 2017

Giúp mình với!

11 tháng 8 2017

b1: ta có: a^2+b^2 >0 ; b^2 +c^2>0 ; c^2 +a^2>0

=> \(a^2+b^2\ge2\sqrt{a^2.b^2}\) (BĐT cau chy)

\(b^2+c^2\ge2\sqrt{b^2.c^2}\) (BĐT cau chy)

\(c^2+a^2\ge2\sqrt{c^2.a^2}\)(BĐT cauchy)

=>\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8a^2.b^2.c^2\)

Dấu '= xảy ra khi a=b=c (đpcm)

15 tháng 12 2016

one piece

18 tháng 12 2016

Em mong cac ban giup cau 2 thoi cung duoc a