K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

xem lại đề bạn nhé vì với m = 5; n = 3 thì bài toán không đúng.

1 tháng 7 2017

Hình như thiếu đề nên cho cả n là số tự nhiên khác 0 nữa.

Xét n = 1 thì ta có:

\(m^2-1=\left(2x+1\right)^2-1=4\left(x^2+x\right)⋮8\)

Giả sử nó đúng tới n = k

\(\Rightarrow m^{2^k}-1=a.2^{k+2}=ay\)

\(\Rightarrow m^{2^k}=ay+1\)

Ta chứng minh nó đúng với n = k + 1

Hay \(\Rightarrow m^{2.2^k}-1⋮2^{k+2+1}\)

\(\Rightarrow\left(ay+1\right)^2-1⋮2y\)

Ta có: \(\left(ay+1\right)^2-1=a^2y^2+2ay\)

Mà \(\hept{\begin{cases}a^2y^2⋮2y\\2ay⋮2y\end{cases}}\)(do y là số chẵn)

\(\Rightarrow\)Nó đúng với n = k + 1.

Vậy theo quy nạp ta có điều phải chứng minh.

21 tháng 11 2015

Hôm nay thứ 7 rồi

Dê !!!? - Khỏi làm ???!

2 tháng 7 2017

B1 a, Có n lẻ nên n = 2k+1(k E N)

Khi đó: n^2 + 7 = (2k+1)^2 +7 

= 4k^2 + 4k + 8

= 4k(k+1) +8 

Ta thấy k và k+1 là 2 số tự nhiên liên tiếp nên có ít nhất 1 số chia hết cho 2

=> k(k+1) chia hết cho 2 <=> 4k(k+1) chia hết cho 8

Mà 8 chia hết cho 8 <=> n^2 + 7 chia hết cho 8

18 tháng 9 2018

\(2005^n\equiv1\left(mod167\right)\)

\(1897^n\equiv60^n\left(mod167\right)\)

\(168^n\equiv1\left(mod167\right)\)

\(\Rightarrow A\equiv1+60^n-60^n-1\equiv0\left(mod167\right)\)

\(\Rightarrow A⋮167\)

Tương tụ ta co:

\(\hept{\begin{cases}A⋮4\\A⋮3\end{cases}}\)

\(\Rightarrow A⋮2004\)