K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 9 2017

Lời giải:

Ta sẽ chứng minh , một số lập phương khi chia $7$ chỉ có thể có dư là \(0,1,6\)

Thật vậy: Xét số \(a^3\), có các TH sau:

+) \(a\equiv 0\pmod 7\Rightarrow a^3\equiv 0\pmod 7\)

+) \(a\equiv \pm 1\pmod 7\Rightarrow a^3\equiv \pm 1\pmod 7\)

\(\Leftrightarrow a^3\equiv 1,6\pmod 7\)

+) \(a\equiv \pm 2\pmod 7\Rightarrow a^3\equiv \pm 8\pmod 7\)

\(\Leftrightarrow a^3\equiv 1,6\pmod 7\)

+) \(a\equiv \pm 3\pmod 7\Rightarrow a^3\equiv \pm 27\pmod 7\)

\(\Leftrightarrow a^3\equiv 1,6\pmod 7\)

Do đó, \(a^3\equiv 0,1,6\pmod 7\) (đpcm)

Mà \(2016k+3=7.288k+3\equiv 3\pmod 7\)

Cho nên , \(2016k+3\) không thể là lập phương của một số nguyên.

15 tháng 1 2017

Giả sử  2016k + 3 = a3 với k và a là số nguyên.

Suy ra: 2016k  = a3 – 3

Ta thấy 2016k 7

Nên ta chứng minh a3 – 3 không chia hết cho 7 thì 2016k + 3 ≠ a3  

Thật vậy:  Ta biểu diễn a = 7m + r, với r .

Trong tất cả các trường hợp trên ta đều có a3 – 3 không chia hết cho 7.

Mà 2016k luôn chia hết cho 7,

 nên a3 – 3  2016k.

Bài toán được chứng minh

5 tháng 1 2019

no biet tao hoc lop 5 ma hoi lop 7,8

10 tháng 2 2020

Gọi số nguyên đó là a. Ta cần chứng minh

a3+11a⋮6a3+11a⋮6

Xét: a3+11a=a(a2+11)=a(a2−1+12)=a(a2−1)+12a=a(a+1)(a−1)+12a⋮6a3+11a=a(a2+11)=a(a2−1+12)=a(a2−1)+12a=a(a+1)(a−1)+12a⋮6

Vậy ta có đpcm.

10 tháng 2 2020

Lời giải:

Xét biểu thức A=n3−13nA=n3−13n. Ta cần cm A⋮6A⋮6

Thật vậy: A=n3−13n=n3−n−12n=n(n2−1)−12nA=n3−13n=n3−n−12n=n(n2−1)−12n

A=n(n−1)(n+1)−12nA=n(n−1)(n+1)−12n

Vì n,n−1n,n−1 là hai số tự nhiên liên tiếp nên tích n(n−1)⋮2n(n−1)⋮2

⇒n(n−1)(n+1)⋮3⇒n(n−1)(n+1)⋮3

Vì n−1,n,n+1n−1,n,n+1 là ba số tự nhiên liên tiếp nên tích n(n−1)(n+1)⋮3n(n−1)(n+1)⋮3

Kết hợp với (2,3) nguyên tố cùng nhau, do đó: n(n−1)(n+1)⋮6n(n−1)(n+1)⋮6

Mà 12n⋮612n⋮6

⇒A=n(n−1)(n+1)−12n⋮6⇔n3−13n⋮6⇒A=n(n−1)(n+1)−12n⋮6⇔n3−13n⋮6

Ta có đpcm.

1 tháng 8 2019

#)Giải :

Giả sử  \(p^3+\frac{p-1}{2}\) là tích của hai số tự nhiên liên tiếp 

\(\Rightarrow p^3+\frac{p-1}{2}=a\left(a+1\right)\Rightarrow2p\left(2p^2+1\right)=\left(2a+1\right)^2+1\)

Nếu \(p=3\Rightarrow p^3+\frac{p-1}{2}=3^3+\frac{3-1}{2}=27+1=28\left(ktm\right)\)

Nếu \(p\ne3\Rightarrow2p^2+1⋮3\Rightarrow\left(2a+1\right)^2+1⋮3\Rightarrow\left(2a+1\right)^2\div3\) dư 2 (mâu thuẫn)

\(\Rightarrowđpcm\)

3 tháng 8 2019

cái cuối là chia 3 dư 1 chớ sao dư 2 vậy bạn