K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

\(A_n=n\left(n^2+1\right)\left(n^2+4\right)\)

\(=\left(n^3+n\right)\left(n^2+4\right)\)

\(=n^5+4n+5n^3\)

\(=n^5-n+5n+5n^3\)

Vì \(n^5\) co dạng \(n^{4k+1}\) (k thuộc N) nên \(n^5\) luôn có chữ số tận cùng giống n

\(\Rightarrow n^5-n=\overline{.....0}⋮5\)

Do đó \(n^5-n+5n+5n^3⋮5\) hay \(A_n⋮5\) (đpcm)

a: \(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

b: \(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;0;8;-6\right\}\)

26 tháng 1 2022

a, \(n^2+5=n^2+n-n-1+6=n\left(n+1\right)-\left(n+1\right)+6\)

\(\Rightarrow n+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

n + 11-12-23-36-6
n0-21-32-45-7

 

b, tương tự 

 

29 tháng 1 2019

\(n\left(n^2+1\right)\left(n^2+4\right)=n\left(n^2+1\right)\left(n^2-1\right)+5n\left(n^2+1\right)\)

\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)+5n\left(n^2+1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n^2-1\right)+5n\left(n^2+1\right)\) chia hết cho 5

29 tháng 1 2019

Bạn có thể giải cụ thể hơn dc ko?

30 tháng 11 2023

Viết  lời giải ra giúp mình nhé !

 

14 tháng 1 2018

Câu hỏi của Ngọn Gió Thần Sầu - Toán lớp 6 - Học toán với OnlineMath

14 tháng 1 2018

bạn mk đó