K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
16 tháng 2 2020
Sửa lại đầu bài là:
\(5^n.\left(5^n+1\right)-6^n.\left(3^n+2^n\right)\) chia hết cho 91
LC
30 tháng 1 2016
Sai đề.
VD: n=2=> \(A=5^2\left(5^2+1\right)-6^2\left(3^2+2\right)=25.\left(25+1\right)-36.\left(9+2\right)=25.26-36.11=650-396254\)không chia hết cho 91
Sửa đề: \(A=5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)=25^n+5^n-18^n-12^n\)
Chứng minh A chia hết cho 7: (mình dùng ký hiệu \(\exists\)làm ký hiệu đồng dư nhé)
\(\hept{\begin{cases}25\exists4\left(mod7\right)\\18\exists\left(mod7\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}25^n\exists4^n\left(mod7\right)\\18^n\exists4^n\left(mod7\right)\end{cases}}\)
\(\Rightarrow25^n-18^n⋮7\)
Ta lại có:
\(\hept{\begin{cases}5\exists5\left(mod7\right)\\12\exists5\left(mod7\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5^n\exists5^n\left(mod7\right)\\12^n\exists5^n\left(mod7\right)\end{cases}}\)
\(\Rightarrow5^n-12^n⋮7\)
Từ đây ta có \(A⋮7\)
Tương tự ta cũng chứng minh được \(A⋮13\)
Vì 7 và 13 nguyên tố cùng nhau nên
\(\Rightarrow A⋮7.13=91\)
Dung