\(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)khac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

TA CÓ A/B=C/D

=A/C=B/D=A-C/B-D=A+C/B+D

=>TỪ TỈ LỆ THỨC A+B/A-B=C+D/C-D TA CÓ THỂ CÓ TỈ LỆ THỨC LA 

AA/B=C/D

10 tháng 2 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng TC DTSBN ta có :

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)

20 tháng 7 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

thay vào VT ta có:

        \(\frac{a+b}{a-b}=\frac{bt+b}{bt-b}=\frac{b\left(t+1\right)}{b\left(t-1\right)}=\frac{t+1}{t-1}\left(1\right)\)

Thay vào VP ta có  :

         \(\frac{c+d}{c-d}=\frac{dt+d}{dt-d}=\frac{d\left(t+1\right)}{d\left(t-1\right)}=\frac{t-1}{t-1}\left(2\right)\)

Từ(1) và (2) => VT = VP đẳng thức được chứng minh

20 tháng 7 2015

Ta có :\(\frac{a}{b}=\frac{c}{d}\left(=\right)\frac{a}{c}=\frac{b}{d}\)    

áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

            

\(\vec{\frac{a+b}{a-b}=\frac{c+d}{c-d}}\)      



 

28 tháng 6 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

\(a,\Rightarrow\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b\left[k+1\right]}{b}=k+1\)

\(\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d\left[k+1\right]}{d}=k+1\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

\(b,\Rightarrow\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left[k+1\right]}{b\left[k-1\right]}=\frac{k+1}{k-1}\)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left[k+1\right]}{d\left[k-1\right]}=\frac{k+1}{k-1}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

12 tháng 1 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)

Ta có: \(\frac{ab}{cd}=\frac{a}{c}\cdot\frac{b}{d}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a^2}{c^2}\)

\(\frac{ab}{cd}=\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)

Từ (1) và (2) => \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}\Rightarrow\frac{ab}{cd}=\left(\frac{a+b}{c+d}\right)^2\left(3\right)\)

Từ (2),(3) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2-b^2}{c^2-d^2}\)

18 tháng 10 2018

ta có:\(\frac{a}{b}=\frac{c}{d}=k\)

          =>a=bk, c=dk

Ta có:\(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b\left(k-1\right)}{b\left(k+1\right)}=\frac{k-1}{k+1}\)(1)

          \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d\left(k-1\right)}{d\left(k+1\right)}=\frac{k-1}{k+1}\)(2)

Từ (1) và (2) suy ra \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

Vậy:

17 tháng 10 2017

a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\left(1\right)\)

Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{7b}{7d}=\frac{3a-7b}{3c-7d}\left(2\right)\)

Từ (1) và (2) => \(\frac{2a+5b}{2c+5d}=\frac{3a-7b}{3c-7d}\Rightarrow\frac{2a+5b}{3a-7b}=\frac{2c+5d}{3c-7d}\)

Câu b tương tự

28 tháng 6 2016

a/b=c/d nên ad=bc

Ta có:

(a+b)(c-d)= ac -ad +bc -bd=ac-bd(1)

(a-b)(c+d)=ac+ad-bc-bd=ac-bd(2)

Từ (1) và (2) suy ra: (a+b)(c-d)=(a-b)(c+d) nên: (a+b)/(a-b)=(c+d)/(c-d)

A/D tỉ lệ thức ta dc :

  \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(=>\frac{a+b}{c+d}=\frac{a-b}{c-d}=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

đpcm