Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Trong 11 số tự nhiên bất kỳ, số dư của chúng khi chia cho 10 có 10 chữ số sau : 0;1;2;3;4;5;6;7;8 và 9.
Có 11 số nhưng chỉ có 10 số dư
=> Có ít nhất 2 số trong 11 số đó có cùng số dư khi chia cho 10.
Vậy hiệu 2 số này sẽ chia hết cho 10.
Mà những số có chữ số tận cùng là 0 thì chia hết cho 10
=> Trong 11 STN bất kỳ luôn có 2 số có chữ số tận ucngf giống nhau.
Vậy trong 11 STN...
Có thể mình trình bày chưa chính xác lắm, bạn có thể sửa lại cách trình bày. ^ - ^
các số có thể tận cùng là từ 0 đến 9
có tất cả 10 số tận cùng mà có 11 số bất kì
suy ra trong 11 số bất kì tồn tại ít nhất hai số có tận cùng giống nhau.
![](https://rs.olm.vn/images/avt/0.png?1311)
Trong 11 số tự nhiên bất kỳ, số dư của chúng khi chia cho 10 có 10 chữ số sau : 0;1;2;3;4;5;6;7;8 và 9.
Có 11 số nhưng chỉ có 10 số dư
=> Có ít nhất 2 số trong 11 số đó có cùng số dư khi chia cho 10.
Vậy hiệu 2 số này sẽ chia hết cho 10.
Mà những số có chữ số tận cùng là 0 thì chia hết cho 10
=> Trong 11 STN bất kỳ luôn có 2 số có chữ số tận cùng giống nhau.
Vậy ...........
![](https://rs.olm.vn/images/avt/0.png?1311)
Lấy 11 số tự nhiên bất kỳ khi chia cho 10 thì được 11 số dư nhận 1 trong 10 số: 0; 1; 2; ...; 9. Theo nguyên lý Đirichlê phải có 2 số có cùng số dư, nên hiệu của 2 số đó chia hết cho 10. Khi đó hai số đó có chữ số tận cùng giống nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của ^-^ shoall^-^ [Destroy the world] - Toán lớp 6 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
Nguyên lí Đi-rích-lê à?
Trong 11 số tự nhiên bao giờ cũng chọn được 2 số mà hiệu của chúng chia hết cho 10
Hiệu này phải tận cùng bằng những số 0 do đó có ít nhất 2 số mà chữ số tận cùng giống nhau
Có 10 chữ số có thể làm tận cùng mà có 11 số nên có ít nhất 2 số có chữ số tận cùng giống nhau (Nguyên lí Đirichle)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số học sinh đạt giải cả 3 môn là a (học sinh)
Gọi số học sinh đạt giải cả 2 môn là b (học sinh)
Gọi số học sinh chỉ đạt giải 1 môn là c (học sinh)
Tổng số giải đạt được là:
3 x a + 2 x b + c = 15 (giải).
Vì tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c.
Vì bất kỳ 2 môn nào cũng có ít nhất 1 học sinh đạt giải cả 2 môn nên:
- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Toán.
- Có ít nhất 1 học sinh đạt giải cả 2 môn Toán và Ngoại Ngữ.
- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Ngoại Ngữ.
Do vậy b= 3.
Giả sử a = 2 thì b bé nhất là 3, c bé nhất là 4; do đó tổng số giải bé nhất là:
3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). Do đó a < 2, nên a = 1.
Ta có: 3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12.
Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng).
Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại vì trái với điều kiện b < c)
Vậy có 1 bạn đạt 3 giải, 3 bạn đạt 2 giải, 6 bạn đạt 1 giải.
Đội tuyển đó có số học sinh là:
1 + 3 + 6 = 10 (bạn).
Tích tớ nha
Gọi số học sinh đạt giải cả 3 môn là \(a\) (học sinh)
Gọi số học sinh đạt giải cả 2 môn là \(b\) (học sinh)
Gọi số học sinh chỉ đạt giải 1 môn là \(c\) (học sinh)
Tổng số giải đạt được là: \(3a+2b+c=15\) (giải).
Vì tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần nên \(a< b< c\).
Vì bất kỳ 2 môn nào cũng có ít nhất 1 học sinh đạt giải cả 2 môn nên:
- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Toán.
- Có ít nhất 1 học sinh đạt giải cả 2 môn Toán và Ngoại Ngữ.
- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Ngoại Ngữ.
Do vậy \(b=3\).
Giả sử \(a=2\) thì \(b_{min}=3\); \(c_{min}=4\)
Do đó tổng số giải bé nhất là:
\(3.2+2.3+4=16>15\) (loại). Do đó \(a< 2\), nên \(a=1\).
Ta có: \(3.1+2b+c=15\)
\(\Rightarrow2b+c=12\)
Nếu \(b=3\) thì \(c=12-2.3=6\) (chọn).
Nếu \(b=4\) thì \(c=12-2.4=4\) (loại vì trái với điều kiện \(b< c\))
Vậy có 1 bạn đạt 3 giải, 3 bạn đạt 2 giải, 6 bạn đạt 1 giải.
Đội tuyển đó có số học sinh là: \(1+3+6=10\) (bạn).
Vậy đội tuyển đó có 10 học sinh