K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

Dễ thấy là trong các số từ 1 tới 899 có số mà tổng các chữ số của nó bằng s, với 1 ≤ s ≤ 26. Thật thế, vd. các số 1, ..., 9, 19, 29, 39, ..., 99, 199, 299, ..., 899 có tổng các chữ số lần lượt là 1, 2, ..., 26.
Gọi s(n) là tổng các chữ số của n.
Trong 1900 số tự nhiên liên tiếp k+1, ..., k+1900 có ít nhất 1 số chia hết cho 1000. Gọi số nhỏ nhất trong 1900 số đó mà chia hết cho 1000 là a*1000 ta có a*1000 + 899 ≤ k + 1900. Nếu s(a*1000) chia hết cho 27 ta có đpcm Giả sử s(a*1000) chia cho 27 dư r với 1≤ r ≤ 26, tức 1 ≤ 27 - r ≤ 26
Ta chọn số b mà 1 ≤ b ≤ 899 sao cho s(b) = 27 - r
=> s(a*1000 + b) = s(a*1000) + s(b) = (27n + r) + (27 - r) = 27(n + 1) chia hết cho 27 (đpcm)

25 tháng 4 2020

đó là số 999 vì 9+9+9=27

25 tháng 4 2020

ố dó là 999

HỌC TỐT

14 tháng 2 2016

câu cuối là chữ gì vậy

14 tháng 2 2016

CMR mình không biết

27 tháng 3 2020
  1. trong 1000 số tự nhiên dầu tiên luôn có luôn tồn tại 1 số chia hết cho 1000 .Gọi số đó là [Aooo] 
  2. Xét 27 số:A000,A001,A002,...,A009,...,A019,...,A899 
  3. Có tổng các chữ số :n,n+1,n+2,n+26 
  4. Sẽ luôn có 1 số chia hết cho 27 
  5. suy ra:... 

HỌC TỐT 

24 tháng 3 2017

Dễ thấy là trong các số từ 1 tới 899 có số mà tổng các chữ số của nó bằng s, với 1 ≤ s ≤ 26. Thật thế,ví dụ. các số 1, ..., 9, 19, 29, 39, ..., 99, 199, 299, ..., 899 có tổng các chữ số lần lượt là 1, 2, ..., 26. 
Gọi s(n) là tổng các chữ số của n. 
Trong 1900 số tự nhiên liên tiếp k+1, ..., k+1900 có ít nhất 1 số chia hết cho 1000. Gọi số nhỏ nhất trong 1900 số đó mà chia hết cho 1000 là a*1000 ta có a*1000 + 899 ≤ k + 1900. Nếu s(a x 1000) chia hết cho 27 ta có đ.p.c.m Giả sử s( a x 1000 ) chia cho 27 dư r với 1\(\le\) r \(\le\) 26, tức 1 \(\le\) 27 - r \(\le\) 26 
Ta chọn số b mà 1 \(\le\) b \(\le\) 899 sao cho s( b ) = 27 - r 
=> s( a x 1000 + b )  = s( a x 1000) + s( b ) = ( 27n + r ) + ( 27 - r ) = 27( n + 1 ) chia hết cho 27 \(\left(ĐPCM\right).\)

24 tháng 3 2017

trong 1000 số tự nhiên liên tiếp đầu tiên luôn có 1 số chia hết cho 1000.

Gọi số đó là N000¯¯¯¯¯¯¯¯ luôn có tổng các chữ số là n

Xét 27 số : N000;N001;N002;...;N009;N019;...;N099;N199;...;N899

Có tổng các chữ số là : n;n+1;n+2;...;n+26

Sẽ luôn có 1 số chia hết 27

Suy ra ﴾đpcm﴿ 

6 tháng 1 2017

Dễ thấy là trong các số từ 1 tới 899 có số mà tổng các chữ số của nó bằng s, với 1 ≤ s ≤ 26. Thật thế, vd. các số 1, ..., 9, 19, 29, 39, ..., 99, 199, 299, ..., 899 có tổng các chữ số lần lượt là 1, 2, ..., 26. 
Gọi s(n) là tổng các chữ số của n. 
Trong 1900 số tự nhiên liên tiếp k+1, ..., k+1900 có ít nhất 1 số chia hết cho 1000. Gọi số nhỏ nhất trong 1900 số đó mà chia hết cho 1000 là a*1000 ta có a*1000 + 899 ≤ k + 1900. Nếu s(a*1000) chia hết cho 27 ta có đ.p.c.m Giả sử s(a*1000) chia cho 27 dư r với 1≤ r ≤ 26, tức 1 ≤ 27 - r ≤ 26 
Ta chọn số b mà 1 ≤ b ≤ 899 sao cho s(b) = 27 - r 
=> s(a*1000 + b) = s(a*1000) + s(b) = (27n + r) + (27 - r) = 27(n + 1) chia hết cho 27 (đ.p.c.m) 
 

6 tháng 1 2017

Trong 1000 số tự nhiên liên tiếp đầu tiên luôn có 1 số chia hết cho 1000. Gọi số đó là N000¯¯¯¯¯¯¯¯ luôn có tổng các chữ số là n

Xét 27 số :

N000;N001;N002;...;N009;N019;...;N099;N199;...;N899

Có tổng các chữ số là : n;n+1;n+2;...;n+26 

Sẽ luôn có 1 số chia hết 27

Suy ra (đpcm)