Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
aabb có gạch đầu nhé ; cái này ^ là mũ nhé
gọi số chính phương cần tìm là aabb (a khác 0; a;b là chữ số )
ta có aabb = 1000a+100a+10b+b
= a(1000+100)+b(10+1)
= 1100a+11b
=11(100a+b) chia hết cho 11 chú ý chia hết cho 11 viết tắt cũng được
Mà aabb là số chính phương ; 11 là số nguyên tố
=>aabb chia hết cho 11^2
=>11(100a+b) chia hết cho 11^2
=>100a+b chia hết cho 11
=> 99a+a+b
=> 9.11.a+(a+b) chia hết cho 11
mà 9.11.a chia hết cho 11
=> a+b chia hết cho 11
mặt khác 0<a<=9 <= : nhỏ hơn hoặc bằng
0<= b<=9
=> 0<a+b<= 18
=> a+b = 11
vì số chính phương có tận cùng là 1 trong các số :0;1;4;5;6;9
=> b thuộc tập hợp 0;1;4;5;6;9
với b=0=>a+0=11
=> a=11 ( loại)
với b=4 =>a=11-4
=> a=7
thử lại 7744=88^2
với a=5
=>aabb=aa55(loại)
vì số chính phương có tận cùng là 5 thì chữ số hàng chục phải là 2
với a=6
=>aabb=aa66 (loại)
vì số chính phương có tận cùng là 6 thì chữ số hàng chục phải là số lẻ
với a=9
=>a=11-9
=>a=2
ta có số 2299
thử lại 2299=11^.19 ( không là số chính phương nên loại )
vậy số cần tìm là 7744
20 số nguyên liên tiếp có 6 số chia hết cho 3
→ tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1
→ tổng 20 số chính phương liên tiếp chia 3 dư 2
Gọi 3 số nguyên liên tiếp là n-1; n; n+1
Tổng bình phương của chúng là: A = (n-1)2 + n2 + (n+1) 2 = 3n2 + 2
Suy ra A chia 3 dư 2.
Xét bình phương của một số n.
+Nếu n = 3k thì n2 = 3k2 -> chia hết cho 3
+Nếu n = 3k+1 thì n2 = (3k+1)2 = 9k2 + 6k + 1 = 3(3k2+2k) + 1 -> chia 3 dư 1
+Nếu n = 3k+2 thì n2 = (3k+2)2 = 9k2 + 6k + 4 = 3(3k2+2k+1) + 1 -> chia 3 dư 1
Vậy một số chính phương chia 3 dư 1 hoặc không dư.
Mà A chia 3 dư 2 => A không phải là số chính phương.
Gọi 3 số nguyên liên tiếp là n-1; n; n+1
Tổng bình phương của chúng là: \(A=\left(n-1\right)^2+n^2+\left(n+1\right)^2=3n^3+2\)
Suy ra A chia 3 dư 2.
Xét bình phương của một số n.
+Nếu n = 3k thì n2 = 3k2 -> chia hết cho 3
+Nếu n = 3k+1 thì n2 = (3k+1)2 = 9k2 + 6k + 1 = 3(3k2+2k) + 1 -> chia 3 dư 1
+Nếu n = 3k+2 thì n2 = (3k+2)2 = 9k2 + 6k + 4 = 3(3k2+2k+1) + 1 -> chia 3 dư 1
Vậy một số chính phương chia 3 chỉ dư 1 hoặc không dư.
Mà A chia 3 dư 2 => A không phải là số chính phương.
1, Gọi 3 số chính phương của 3 số tự nhiên liên tiếp lần lượt là : (a-1)^2 ; a^2 ; (a+1)^2
Xét : (a-1)^2+a^2+(a+1)^2 = a^2-2a+1+a^2+a^2+2a+1 = 3a^2+2 chia 3 dư 2
=> (a-1)^2+a^2+(a+1)^2 ko phải là số chính phương
Tk mk nha
Cmr tổng của bình phương 5 số tự nhiên liên tiếp không thể là số chính phương
ai giải được mình tick
**** trước đi mik giải cho bạn!! Mình hứa luôn!!