Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy là trong các số từ 1 tới 899 có số mà tổng các chữ số của nó bằng s, với 1 ≤ s ≤ 26. Thật thế, vd. các số 1, ..., 9, 19, 29, 39, ..., 99, 199, 299, ..., 899 có tổng các chữ số lần lượt là 1, 2, ..., 26.
Gọi s(n) là tổng các chữ số của n.
Trong 1900 số tự nhiên liên tiếp k+1, ..., k+1900 có ít nhất 1 số chia hết cho 1000. Gọi số nhỏ nhất trong 1900 số đó mà chia hết cho 1000 là a*1000 ta có a*1000 + 899 ≤ k + 1900. Nếu s(a*1000) chia hết cho 27 ta có đpcm Giả sử s(a*1000) chia cho 27 dư r với 1≤ r ≤ 26, tức 1 ≤ 27 - r ≤ 26
Ta chọn số b mà 1 ≤ b ≤ 899 sao cho s(b) = 27 - r
=> s(a*1000 + b) = s(a*1000) + s(b) = (27n + r) + (27 - r) = 27(n + 1) chia hết cho 27 (đpcm)
Ta có :
396=4.9.11396=4.9.11
-) Nhận xét :
+)A có 2 chữ số tận cùng là 16
⇒⇒ A chia hết cho 4 (1)
+) Tổng các chữ số của A = 1 + 5 + 5+ * + 7 + 1 + 0 + * + 4 + * + 1 + 6 = 30 + * + * + * =36
⇒⇒ A chia hết cho 9 (2)
+) Tổng các chữ số hàng lẻ của A = 1 + 5 + 7 + 0 + 4 + 1 = 18
+) Tổng các chữ số hàng chẵn của A = 5 + * + 1 + * + * + 6 = 12 + * + * + * =12+6 =18
⇒⇒ Tổng các chữ số hàng lẻ trừ đi tổng các chữ số hàng chẵn = 18 - 18 = 0
⇒⇒ A chia hết cho 11 (3)
Từ (1) + (2) + (3) ⇒⇒ A⋮4;9;11A⋮4;9;11
⇒A⋮BCNN(4;9;11)=396⇒A⋮BCNN(4;9;11)=396 vs các chữ số tùy ý 1,2,3
⇒đpcm
ab - (a + b) = 10a + b - a - b
= 9a
Vì 9 chia hết cho 9 => 9.a chia hết cho 9
Vậy hiệu của 1 số với tổng các c/s của nó luôn chia hết cho 9
Gọi tổng các số tự nhiên của \(n\) là \(x\).Ta có :
\(n-x⋮9\)
Giả sử: \(n=\overline{a_ma_{m-1}...a_1a_0}\)\(\)(n có \(m+1\) chữ số) khi đó:
\(x=a_m+a_{m-1}+...+a_1+a_0\)
Ta có: \(n=a_m.10^m+a_{m-1}.10^{m-1}+...+a_1.10+a_0\)
\(=99...9.a_m+99...9.a_{m-1}+...+9.a_1+\left(a_m+a_{m-1}+...+a_1+a_0\right)\)
Vì\(99...9.a_m+99...9.a_{m-1}+...+9.a_1+⋮9\)nên ta đặt bằng 9k (k\(\in\)N)
\(\Rightarrow\)\(n=9k+x\Rightarrow n-x=9k⋮9\)
Trong N có các Ư(50) là : {1;2;5;10;25;50}
Các số tự nhiên khác 0 khi chia cho 50 có 50 khả năng dư.
Nếu trong 27 số tự nhiên đó có 2 số cùng dư khi chia cho 50,vậy hiệu 2 số này chia hết cho 50(Bài toán được chứng minh)
Nếu trong 27 số tự nhiên không có 2 số nào có cùng số dư khi chia cho 50 =>ta có ít nhất 48 năng dư khi chia cho 50(loại ít nhất 2 số 0 và 25)
Ta chia 48 khả năng dư thành 24 nhóm : (1;49);(2;48);....;(24;26)
Vì có 27 số mà có 24 nhóm => Theo nguyên lí dirichlet sẽ có ít nhất 2 số có cùng một nhóm và đúng bằng 50 chia hết cho 50(bài toán được chứng minh)
Vậy trong 27 stn tuỳ ý luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 50