K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

Xét 2003 số có dạng 2004, 20042004, 200420042004, ..., 2004200420042004...2004 (2003 lần số 2004).
TH1: Nếu có 1 số chia hết cho 2003 thì ta có đpcm.
TH2: Nếu không có số nào chia hết cho 2003 thì có ít nhất 2 số có cùng số dư khi chia cho 2003. Gọi 2 số đó là \(a_i=20042004...2004\) (i lần số 2004) và \(a_j=20042004...2004\) (j lần số 2004)

\(\Rightarrow a_i-a_j=2004..200400..000\vdots 2003\) (i-j lần số 2004 và 4j lần số 0)

\(\Leftrightarrow 20042004...2004.10^{4j}\vdots 2003\)

\((10^{4j}, 2003)=1\)

Suy ra ta có đpcm.

23 tháng 10 2018

Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2 
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3. 
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3. 
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.

26 tháng 1 2021

\(^∗\)Xét \(n=2011\)thì \(S\left(2011\right)=2011^2-2011.2011+2010=2010\)(vô lí)

\(^∗\)Xét \(n>2011\)thì \(n-2011>0\)do đó \(S\left(n\right)=n\left(n-2011\right)+2010>n\left(n-2011\right)>n\)(vô lí do \(S\left(n\right)\le n\))

* Xét \(1\le n\le2010\)thì \(\left(n-1\right)\left(n-2010\right)\le0\Leftrightarrow n^2-2011n+2010\le0\)hay \(S\left(n\right)\le0\)(vô lí do \(S\left(n\right)>0\))

Vậy không tồn tại số nguyên dương n thỏa mãn đề bài

8 tháng 7 2017

làm đc mấy bài rồi mày

8 tháng 7 2017

đứa nào đấy?

1 tháng 6 2017

Với k > 1 , bao giờ ta cũng có 10k - 1 \(⋮\)19 

suy ra 102k - 1 \(⋮\)19

          103k - 1 \(⋮\)19

            ...

           1019k - 1 \(⋮\)19

Vậy : 10k - 1 + 102k - 1 + 103k - 1 + ... + 1019k - 1 \(⋮\)19 

hay ( 10k + 102k + 103k + ... + 1019k ) - 19 \(⋮\)19

do đó 10k + 102k + ... + 1019k \(⋮\)19

100...0 ( k chữ số 0 )+ 100...0 ( 2k chữ số 0 ) + ... + 100...0 ( 19k chữ số 0 ) \(⋮\)19

Tổng này có 19 số hạng, tổng các chữ số của nó đúng bằng 19

1 tháng 6 2017

Ta có 19;1919;191919;19.....19 (20 số 9)

Theo nguyên lí Direchlet thì có ít nhất 2 trong số dãy trên có cùng số dư khi chia cho 13 

=> 19....19 (x chữ số 9) - 19....19 (y chữ số 9) chia hết cho 9

=> 19....1900....0 (x-y chữ số 19, y chữ số 0) chia hết cho 19

=> 19...19.10^y (x-y chữ số 19) chia hết cho 19

Vì 10^y và 19 là nguyên tố cùng nhau

=> 19.....19 (x-y chữ số 19) chia hết cho 19

=> Tồn tại 1 bội của số 19 mà gồm toàn chữ số 19 (đpcm)