K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

a )    \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{2b}{2d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{b}{d}=\frac{2a}{2c}=\frac{2a+b}{2c+d}=\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{2a+b}{2c+d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\left(đpcm\right)\)

b )  \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có : 

\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)

\(\Rightarrow\left(a+2c\right)\left(b-d\right)=\left(a-c\right)\left(b+2d\right)\left(đpcm\right)\)

Chúc bạn học tốt !!! 

8 tháng 5 2018

\(\frac{a}{c}=\frac{b}{d}\)

suy ra\(\frac{2a}{2c}=\frac{b}{d}=\frac{2a+b}{2c+d}\left(1\right)\)

\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\left(2\right)\)

\(tu\left(1\right)\left(2\right)suyra\)\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)

14 tháng 10 2021

a, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

b, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{3a}{4c}=\dfrac{4b}{4d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

 

 

14 tháng 10 2021

c, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)

Do đó \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

d, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Do đó \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

DD
2 tháng 10 2021

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\).

\(\frac{a-2c}{3a+c}=\frac{bt-2dt}{3bt+dt}==\frac{b-2d}{3b+d}\).

2 tháng 10 2021

ơ anh ơi anh đã lm hết bài đou

4 tháng 10 2015

a, a/b = c/d => a+b/c+d = a-b/c-d

=> a+b/a-b = c+d/c-d