\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{a+c+d}}+\sqrt{\frac{c}{a+b+d}}+\sqrt{\frac{d}{a+b+c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2020

Ta có: \(\sqrt{\frac{a}{b+c+d}}=\sqrt{\frac{a^2}{a\left(b+c+d\right)}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\)

Xét \(\sqrt{a\left(b+c+d\right)}\le\frac{a+b+c+d}{2}\)

\(\Rightarrow\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\)

\(\Rightarrow\sqrt{\frac{a}{b+c+d}}\ge\frac{2a}{a+b+c+d}\)

(a,b,c,d>0)

Cmtt: \(\hept{\begin{cases}\sqrt{\frac{b}{a+c+d}}\ge\frac{2b}{a+b+c+d}\\\sqrt{\frac{c}{b+a+d}}\ge\frac{2c}{a+b+c+d}\\\sqrt{\frac{d}{a+b+c}}\ge\frac{2d}{a+b+c+d}\end{cases}}\)

\(\Rightarrow\sqrt{\frac{b}{a+c+d}}+\sqrt{\frac{c}{a+b+d}}+\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{d}{a+b+c}}\)\(\ge\frac{2a+2b+2c+2d}{a+b+c+d}=2\)

Đến đây tự xử lí phần dấu "="

3 tháng 8 2019

Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)(Theo tính chất của dãy tỉ số bằng nhau)

\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

13 tháng 12 2019

b)

\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}.\)

+ Thay \(x=\frac{16}{9}\) vào B ta được:

\(B=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}\)

\(B=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}\)

\(B=\frac{\frac{7}{3}}{\frac{1}{3}}\)

\(B=7.\)

+ Thay \(x=\frac{25}{9}\) vào B ta được:

\(B=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}\)

\(B=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}\)

\(B=\frac{\frac{8}{3}}{\frac{2}{3}}\)

\(B=4.\)

Vậy với \(x=\frac{16}{9}\)\(x=\frac{25}{9}\) thì B có giá trị là 1 số nguyên (đpcm).

e)

Chúc bạn học tốt!

13 tháng 11 2016

a) Đặt A=\(\frac{x^2-1}{x^2}\)

Ta có:

\(\Rightarrow A=\frac{x^2}{x^2}-\frac{1}{x^2}\)

\(\Rightarrow A=1-\frac{1}{x^2}\)

\(\Rightarrow x\in Z\) để thỏa mãn A<0

 

 

17 tháng 11 2016

b)\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

=>(a^2+b^2)*cd=(c^2+d^2)*ab

a^2cd+b^2cd=abc^c+abd^2

a^2cd+b^2cd-c^2ab-d^2ab=0

(a^2cd-abd^2+(b^2cd-abc^2)=0

ad(ac-bd)-bc(ac-bd)=0

(ad-bc)(ac-bd)=0

=>ad-bc=0 hoặc ac-bd=0

ad=bc ac=bd

=>a/b=c/d hoặc a/d=b/c

 

24 tháng 10 2016

a) căn 197 > căn 194 = 14

=> căn 194 > 14

b) Đặt a/b = c/d = K ( K thuộc N )

=> a = bK 

  c = dK

thay a = bK 

 c = dK vào cái cần chứng minh 

thì chắc chắn chúng bằng nhau

17 tháng 7 2019

1. a) 3+2=5

b) 0,5-0,1=0,4

c) 4/5-1/9=31/45

d) 2-0,6=1,4

2. a) 8-4+3=7

b) 11+5-3=13

c) 3/2-4/6-7-37/6

d) 4+5-6=3

17 tháng 7 2019

Mơn nhìu <3