\(\sqrt{15}\)là số vô tỉ   ( giải theo 2 cách)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

a) Vì x5 + x3 + x2 + 1= x3(x2 + 1) + x2 + 1 = (x2 + 1)(x3 + 1)

nên (x5 + x3 + x2 + 1):(x3 + 1) = (x2 + 1)(x3 + 1) : (x3 + 1) = (x2 + 1)

b) Vì x2 - 5x + 6 = x2 - 3x - 2x + 6 = x(x - 3) - 2(x - 3) = (x - 3)(x - 2)

nên (x2 - 5x + 6):(x - 3) = (x - 3)(x - 2) : (x - 3) = (x - 2)

25 tháng 8 2017

minh co 1 cach thoi

Gia su \(\sqrt{15}\)la so huu ti suy ra co the bieu dien dc duoi dang \(\frac{a}{b}\)

voi a,b toi gian va la nguyen to cung nhau

\(\frac{a}{b}=\sqrt{15}\)

\(\frac{a^2}{b^2}=15\)

\(a^2=15b^2\)suy ra a^2 chia het cho 15

 a=15k

a^2=225k^2

thay vao

225k^2=15b^2

b^2=15k^2

suy ra a,b chia het cho 15 neu chua toi gian vay gia su sai

12 tháng 10 2017

iả sử √22 là số hữu tỉ.

Vậy có thể viết √22 dưới dạng abab với a,bϵZ,b≠0a,bϵZ,b≠0 và (a;b)=1(a;b)=1 (1)

⇒a2b2=2⇒a2=2b2⇒a2b2=2⇒a2=2b2

⇒a⇒a chẵn . Đặt a=2ka=2k (kϵZkϵZ)

⇒4k2b2=2⇒4k2=2b2⇒b2=2k2⇒4k2b2=2⇒4k2=2b2⇒b2=2k2

⇒b⇒b chẵn . 

Vậy (a;b)≠1(a;b)≠1 trái với (1)

Vậy √22 là số vô tỷ.

12 tháng 10 2017

Xin phép sửa lại đề: Chứng minh rằng \(\sqrt{2}\)là số vô tỉ.

Giải:

Giả sử \(\sqrt{2}\)là số vô tỉ.

Khi đó ta có: \(\sqrt{2}=\frac{m}{n}\) \(m;n=1\)

\(\Rightarrow2=\frac{m^2}{n^2}\)

\(\Rightarrow2n^2=m^2\)

\(\Rightarrow m⋮n\) \(2;1=1\)

\(\Rightarrow\)Điều giả sử vô lý

\(\Rightarrow\sqrt{2}\)là số vô tỉ

9 tháng 9 2016

Bài này hơi khó

14 tháng 10 2016

bạn lấy ví dụ ra là bít

9 tháng 11 2015

ko bik làm thông cảm nha( OLM đừng xóa )

10 tháng 11 2015

a) Chứng minh phản chứng: Giả sử tổng đó là số hữu tỉ

=> Số hạng vô tỉ = Số hữu tỉ - Số hữu tỉ => Số vô tỉ = Số hữu tỉ => Mâu thuẫn

Vậy tổgg só là số vô tỉ

10 tháng 11 2015

là số vô tỉ

cô Loan viết xong không xem lại đề

21 tháng 8 2016

\(\sqrt{5}\)

=2,2360607978....

=> Số trên là 1 số có giá trị chính xác

Mà là 1 số có giá trị kéo dài

=> Nó là số vô tỉ

21 tháng 8 2016

\(\sqrt{5}\)là số vô tỉ.

Chứng minh:

Vì 5 là một số nguyên tố nên chỉ có hai ước là 1 và 5.

Ở đây khi được tạo bởi 2 thừa số giống nhau, và chính nó là tích.                ( lí luận 1)

=> Hai thừa số đó là 1 số vô tỉ (là 1 số kéo dài)

Có thể nói 5 không là một số chính phương nào cả => \(\sqrt{5}\)cũng không là 1 số hữu tỉ mà là 1 số vô tỉ.               (lí luận 2)

21 tháng 8 2016

Giả sử căn 5 là số vô tỉ biểu thị bởi phân số tối giản \(\frac{p}{q}\)
=> \(\frac{p}{q}=\sqrt{5}\Rightarrow\frac{p^2}{q^2}=5\Rightarrow p^2=5q^2\)
Như vậy \(p^2\) chia hết cho 5 => p chia hết cho 5 => p= 5k 
Do đó \(25k^2=5q^2\Rightarrow q^2=5k^2\Rightarrow q^2⋮5\Rightarrow q⋮5\) chia hết cho 5 nên q chia hết cho 5 
Vì p;q chia hết cho 5 nên p/q không tối giản (mâu thuẫn với giả thiết) 
Vậy căn 5 là số vô tỉ

21 tháng 8 2016

Ta giải bằng phương phap phản chứng .

Giả sử \(\sqrt{5}\) là số hữa tỉ

\(\Rightarrow\sqrt{5}=\frac{a}{b}\left(a;b\in Z;\left(a;b\right)=1\right)\)

\(\Rightarrow5=\frac{a^2}{b^2}\)

\(\Rightarrow\frac{a^2}{5}=b^2\)

Mà b là số nguyên

\(\Rightarrow a^2⋮5\)

Mặt khác 5 là số nguyên tố

\(\Rightarrow a^2⋮25\)

Ta lại có

\(a^2=5b^2\)

\(\Rightarrow5b^2⋮25\)

\(\Rightarrow b^2⋮5\)

Ta có

a^2 chia hết cho 5 ; b^2 chia hết cho 5

=> \(ƯC_{\left(a;b\right)}=5\)

Trái với giả thiết

=> giả sử sai

Vậy căn 5 là số vô tỉ